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Abstract

We develop divergence-conforming B-spline discretizations for the numerical solu-
tion of the steady Navier-Stokes equations. These discretizations are motivated by
the recent theory of isogeometric discrete differential forms and may be interpreted
as smooth generalizations of Raviart-Thomas elements. They are (at least) patch-
wise C0 and can be directly utilized in the Galerkin solution of steady Navier-Stokes
flow for single-patch configurations. When applied to incompressible flows, these dis-
cretizations produce pointwise divergence-free velocity fields and hence exactly satisfy
mass conservation. Consequently, discrete variational formulations employing the new
discretization scheme are automatically momentum-conservative and energy-stable.
In the presence of no-slip boundary conditions and multi-patch geometries, the dis-
continuous Galerkin framework is invoked to enforce tangential continuity without
upsetting the conservation or stability properties of the method across patch bound-
aries. Furthermore, as no-slip boundary conditions are enforced weakly, the method
automatically defaults to a compatible discretization of Euler flow in the limit of
vanishing viscosity. The proposed discretizations are extended to general mapped ge-
ometries using divergence-preserving transformations. For sufficiently regular single-
patch solutions subject to a smallness condition, we prove a priori error estimates
which are optimal for the discrete velocity field and suboptimal, by one order, for the
discrete pressure field. We present a comprehensive suite of numerical experiments
which indicate optimal convergence rates for both the discrete velocity and pressure
fields for general configurations, suggesting that our a priori estimates may be conser-
vative. These numerical experiments also suggest our discretization methodology is
robust with respect to Reynolds number and more accurate than classical numerical
methods for the steady Navier-Stokes equations.

Keywords: Steady Navier-Stokes equations, B-splines, Isogeometric analysis, Divergence-
conforming discretizations
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1 Introduction

Steady Navier-Stokes flow is an important simplification of fully unsteady Navier-
Stokes flow. Many low speed, laminar fluid flows may be accurately described by
the steady Navier-Stokes equations. Additionally, one arrives at a steady Navier-
Stokes problem by conducting a Reynolds time-averaging of statistically stationary
Navier-Stokes flows (see Chapters 3 and 4 of [31]). Despite its simple appearance,
the steady Navier-Stokes problem has presented considerable difficulty in its numer-
ical approximation. It is subject to the Babuška-Brezzi inf-sup condition, and when
the convection operator is expressed in conservation form and the incompressibility
constraint is not met exactly, terms corresponding to convection can actually accrete
energy. This ultimately leads to unstable numerical formulations, and alternative rep-
resentations of the convection operator have been devised to bypass this instability.
The most popular of these in the finite element community is the skew-symmetric
representation [40]. Discretizations of the convection term using the skew-symmetric
representation neither produce nor dissipate energy and hence lead to stable numer-
ical methods. Unfortunately, these discretizations do not inherit the conservation
structure of the Navier-Stokes equations. Alternatively, provably stable, convergent,
and locally-conservative discontinuous Galerkin discretizations have been devised for
the steady Navier-Stokes equations in [11, 12], but these discretizations are encum-
bered with a proliferation of degrees of freedom and are thus largely limited to two
spatial dimensions. Hybrid technologies have recently been proposed with the aim of
extending the applicability of discontinuous Galerkin methods to larger problem sizes
[28, 29].

Another discretization procedure for the steady Navier-Stokes equations arises
through the intelligent choice of weighting function in a Petrov-Galerkin method. A
popular method of choice is the use of an advective formulation in conjunction with
the Streamline-Upwind Petrov-Galerkin (SUPG) method [7] to handle convective in-
stabilities and the Pressure-Stabilizing Petrov-Galerkin (PSPG) method [25, 37] to
handle pressure instabilities. Unfortunately, the theoretical analysis of this method
in the steady regime has been entirely restricted to linearized Oseen problems where
the convection velocity is assumed fixed and divergence-free. These linearized model
problems are ultimately insufficient as the discrete convection velocity is not, in gen-
eral, divergence-free. To further control the divergence term, so-called grad-div stabi-
lization techniques [33] have been proposed which add artificial dilatational stresses
to the underlying variational formulation. Using a combination of an advective for-
mulation, SUPG, PSPG, and grad-div stabilization, provably convergent numerical
methods have been devised for the steady Navier-Stokes equations (see Chapter 3
of [33]), and such methods can be made to globally conserve momentum through a
residual-based modification [26]. Still, a provably convergent H1-Galerkin finite ele-
ment discretization of the three-dimensional steady Navier-Stokes equations written
in conservation form has proved elusive.
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In this paper, we present divergence-conforming B-spline discretizations for the
steady Navier-Stokes problem. These discretizations are motivated by the theory of
isogeometric discrete differential forms [9, 10] and extend the Darcy-Stokes-Brinkman
discretizations presented in [19] to nonlinear Navier-Stokes flows. As our discretiza-
tions return pointwise divergence-free velocity fields, we can utilize a variational for-
mulation written in conservation form without being susceptible to instability. We
impose no-penetration boundary conditions strongly and no-slip boundary conditions
weakly using Nitsche’s method. This allows our discretization procedure to naturally
default to a conforming approximation of Euler flow in the limit of vanishing vis-
cosity. This also allows our method to capture boundary layers without resorting
to stretched meshes [3, 4]. We prove stability and error estimates for single-patch
discretizations under a smallness condition. Our error estimates are optimal for the
discrete velocity field and suboptimal, by one order, for the discrete pressure field
provided that that the exact solution is sufficiently regular. All of our estimates’ de-
pendencies on the viscosity and the penalty parameter of Nitsche’s method are made
explicit in our analysis. We utilize the methods of exact and manufactured solutions
to verify our error estimates and find our discrete pressure fields converge at optimal
order in contrast with our theoretical estimates. We further test the effectiveness of
our method by considering the application of our discretization to the analysis of two
benchmark problems: lid-driven cavity flow and confined jet impingement.

An outline of this paper is as follows. In the following section, we present some
basic notation. In Section 3, we recall the steady Navier-Stokes problem subject to
homogeneous Dirichlet boundary conditions. In Section 4, we briefly review B-splines,
the basic building blocks of our new discretization technique, and in Section 5, we
define the B-spline spaces which we will utilize to discretize velocity and pressure
fields. In Section 6, we present our discrete variational formulation for the steady
Navier-Stokes problem and prove continuity, stability, and a priori error estimates
for the single-patch setting. In Section 7, we discuss the extension of our methodology
to the multi-patch setting. In Sections 8 and 9, we present numerical results, and in
Section 10, we draw conclusions. Before proceeding, note that one might say there is
a fundamental issue concerning the fact that our analysis only covers flows subject to
“small data”. However, well-posedness of the continuous problem is subject to a sim-
ilar constraint, and we believe the small data assumption is natural as medium- and
large-Reynolds number flows are inherently unsteady in both laminar and turbulent
regimes.

2 Notation

We begin this paper with some basic notation. For d a positive integer representing
dimension, let D ⊂ Rd denote an arbitrary bounded Lipschitz domain with boundary
∂D. As usual, let L2(D) denote the space of square integrable functions on D and
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define L2(D) = (L2(D))
d
. We will also utilize the more general Lebesgue spaces

Lp(D) where 1 ≤ p ≤ ∞ and their vectorial counterparts Lp(D). Let Hk(D) denote
the space of functions in L2(D) whose kth-order derivatives belong to L2(D) and

define Hk(D) =
(
Hk(D)

)d
. We identify with Hk(D) the standard Sobolev norm

‖v‖Hk(D) =

∑
|α|<k

‖Dαv‖2
L2(D)

1/2

where α = (α1, α2, . . . , αd) is a multi-index of non-negative integers, |α| = α1 + α2 +
. . .+ αd, and

Dα =
∂|α|

∂xα1
1 ∂x

α2
2 . . . ∂xαdd

.

We denote the Sobolev semi-norms as |·|Hk(D), and we adopt the convention H0(D) =
L2(D). Throughout, Sobolev spaces of fractional order are defined using function
space interpolation (see, e.g., Chapter 1 of [38]). We define H1

0 (D) ⊂ H1(D) to be
the subspace of functions with homogeneous boundary conditions and define H1

0(D)
to be the vectorial counterpart of H1

0 (D). We define Hs(div;D) to be the Sobolev
space of all functions in Hs(Ω) whose divergence also belongs to Hs(D). This space
is equipped with the norm

‖v‖Hs(div;D) =
(
‖v‖2

Hs(D) + ‖divv‖2
Hs(D)

)1/2
.

When s = 0, we omit the superscript. We also define

H0(div;D) = {v ∈ H(div;D) : v · n = 0 on ∂D}

where n denotes the outward pointing unit normal. Finally, we denote L2
0(D) ⊂ L2(D)

as the space of square-integrable functions with zero average on D.

3 The Steady Navier-Stokes Problem

In this section, we recall the steady Navier-Stokes problem subject to homogeneous
Dirichlet boundary conditions. For d a positive integer, let Ω denote a Lipschitz
bounded open set of Rd. Throughout this paper, d will be either 2 or 3. The problem
of interest is as follows.

(S)



Given ν ∈ R+ and f : Ω → Rd, find u : Ω̄ → Rd and p : Ω → R such
that

∇ · (u⊗ u)−∇ · (2ν∇su) + gradp = f in Ω (1)

divu = 0 in Ω (2)

u = 0 on ∂Ω. (3)
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Above, u denotes the flow velocity of a fluid moving through the domain Ω, p de-
notes the pressure acting on the fluid divided by the fluid density, ν denotes the
kinematic viscosity of the fluid, f denotes a body force acting on the fluid divided by
the density, and ∇su denotes the symmetrized gradient of the velocity field defined

by ∇su = 1
2

(
∇u + (∇u)T

)
. Note that the pressure is only determined up to an

arbitrary constant.
Assuming that f ∈ L2(Ω) , the weak form for the steady Navier-Stokes problem is

written as follows:

(W )



Find u ∈ H1
0(Ω) and p ∈ L2

0(Ω) such that

k(u,v) + c(u,u; v)− b(p,v) + b(q,u) = (f,v)L2(Ω) (4)

for all v ∈ H1
0(Ω) and q ∈ L2

0(Ω) where

k(w,v) = (2ν∇sw,∇sv)(L2(Ω))d×d , ∀w,v ∈ H1
0(Ω) , (5)

b(q,v) = (q, divv)L2(Ω) , ∀q ∈ L2
0(Ω),v ∈ H1

0(Ω) , (6)

c(w,x; v) = − (w ⊗ x,∇v)(L2(Ω))d×d , ∀w,x,v ∈ H1
0(Ω) . (7)

Note that the trilinear form c(·, ·; ·) : H1
0(Ω)×H1

0(Ω)×H1
0(Ω) → R makes sense due

to the continuous Sobolev embedding

H1
0(Ω) ↪→ L4(Ω). (8)

In fact, as ∂Ω is Lipschitz, we have the stronger embedding H1(Ω) ↪→ L4(Ω).
We have the following existence and uniqueness theorem for flows subject to small

data whose proof may be found in [22].

Theorem 3.1. Problem (W ) has a unique weak solution (u, p) ∈ H1
0(Ω) × L2

0(Ω)
provided the problem data satisfies an inequality of the form

CΩCPoin
ν2

‖f‖L2(Ω) < 1 (9)

where CΩ is a constant which only depends on Ω and CPoin is the positive constant
appearing in Poincaré’s inequality:

‖v‖H1(Ω) ≤ CPoin|v|H1(Ω), ∀v ∈ H1(Ω) ∩ H0(div; Ω) . (10)

Furthermore, such a weak solution satisfies the inequality

|u|H1(Ω) ≤
CPoin
ν
‖f‖L2(Ω). (11)
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Remark 3.1. Note that, since ν is constant and divu = 0,

∇ · (2ν∇su) = ν∆u. (12)

This inspires a different variational formulation than that presented here which is
often the basis for numerical discretization (see, for example, [12]). However, such a
formulation cannot easily accommodate traction boundary conditions. We have found
that discrete formulations based on either of the diffusion operators given by (12) yield
qualitatively and quantitatively similar results.

Remark 3.2. In general, we may replace the constant-viscosity Newtonian stress
tensor given here, T = 2ν∇su, with more suitable choices of stress tensor. Our
analysis does not cover this general setting.

4 B-splines and Geometrical Mappings

In this section, we briefly introduce B-splines, the primary ingredient in our discretiza-
tion technique for the steady Navier-Stokes equations. We also introduce mappings
which will allow us to extend our discretization technique to general geometries of
engineering interest. For an overview of B-splines, their properties, and robust algo-
rithms for evaluating their values and derivatives, see de Boor [14] and Schumaker
[35]. For the application of B-splines to finite element analysis, see Höllig [23] and
Cottrell, Hughes, and Bazilevs [13].

4.1 Univariate B-splines

For two positive integers k and n, representing degree and dimensionality respectively,
let us introduce the ordered knot vector

Ξ := {0 = ξ1, ξ2, . . . , ξn+k+1 = 1} (13)

where
ξ1 ≤ ξ2 ≤ . . . ξn+k+1.

Given Ξ and k, univariate B-spline basis functions are constructed recursively starting
with piecewise constants (k = 0):

B0
i (ξ) =

{
1 if ξi ≤ ξ < ξi+1

0 otherwise.
(14)

For k = 1, 2, 3, . . ., they are defined by

Bk
i (ξ) =

ξ − ξi
ξi+k − ξi

Bk−1
i (ξ) +

ξi+k+1 − ξ
ξi+k+1 − ξi+1

Bk−1
i+1 (ξ). (15)
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When ξi+k − ξi = 0, ξ−ξi
ξi+k−ξi

is taken to be zero, and similarly, when ξi+k+1− ξi+1 = 0,
ξi+k+1−ξ

ξi+k+1−ξi+1
is taken to be zero. B-spline basis functions are piecewise polynomials of

degree k, form a partition of unity, have local support, and are non-negative. We
refer to linear combinations of B-spline basis functions as B-splines or simply splines.

Let us now introduce the vector ζ = {ζ1, . . . , ζm} of knots without repetitions and
a corresponding vector {r1, . . . , rm} of knot multiplicities. That is, ri is defined to be
the multiplicity of the knot ζi in Ξ. We assume that ri ≤ k+1. Let us further assume
throughout that r1 = rm = k + 1, i.e, that Ξ is an open knot vector. This allows
us to easily prescribe Dirichlet boundary conditions. At the point ζi, B-spline basis
functions have αj := k− rj continuous derivatives. We define the regularity vector α
by α := {α1, . . . , αm}. By construction, α1 = αm = −1. In what follows, we utilize
the notation

|α| = min{αi : 2 ≤ i ≤ m− 1} (16)

and α− 1 := {−1, α2 − 1, . . . , αm−1 − 1,−1} when αi ≥ 0 for 2 ≤ i ≤ m− 1.
We denote the space of B-splines spanned by the basis functions Bk

i as

Skα := span
{
Bk
i

}n
i=1

. (17)

When k ≥ 1 and αi ≥ 0 for 2 ≤ i ≤ m − 1, the derivatives of functions in Skα are
splines as well. In fact, we have the stronger relationship{

d

dx
v : v ∈ Skα

}
≡ Sk−1

α−1 . (18)

One of the most important properties of univariate B-splines is refinement and, per-
haps more importantly, nestedness of refinement. Knot insertion and degree elevation
algorithms are described in detail in Chapter 2 of [13].

4.2 Multivariate B-splines

The definition of multivariate B-splines follows easily through a tensor-product con-
struction. For d again a positive integer, let us consider the unit cube Ω̂ = (0, 1)d ⊂
Rd, which we will henceforth refer to as the parametric domain. Mimicking the one-
dimensional case, given integers kl and nl for l = 1, . . . , d, let us introduce open
knot vectors Ξl = {ξ1,l, . . . , ξnl+kl+1,l} and the associated vectors ζl = {ζ1,l, . . . , ζml,l},
{r1,l, . . . , rml,l}, and αl = {α1,l, . . . , αml,l}. There is a parametric Cartesian meshMh

associated with these knot vectors partitioning the parametric domain into rectangu-
lar parallelepipeds. Visually,

Mh = {Q = ⊗l=1,...,d (ζil,l, ζil+1,l) , 1 ≤ il ≤ ml − 1} . (19)

For each element Q ∈ Mh we associate a parametric mesh size hQ = diam(Q). We
also define a shape regularity constant λ which satisfies the inequality

λ−1 ≤ hQ,min

hQ
≤ λ, ∀Q ∈Mh, (20)
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where hQ,min denotes the length of the smallest edge of Q. A sequence of parametric
meshes that satisfy the above inequality for an identical shape regularity constant is
said to be locally quasi-uniform.

We associate with each knot vector Ξl (l = 1, . . . , d) univariate B-spline basis
functions Bkl

il,l
of degree kl for il = 1, . . . , nl. On the mesh Mh, we define the tensor-

product B-spline basis functions as

Bk1,...,kd
i1,...,id

:= Bk1
i1,1
⊗ . . .⊗Bkd

id,d
, i1 = 1, . . . , n1, . . . id = 1, . . . , nd. (21)

We then accordingly define the tensor-product B-spline space as

Sk1,...,kdα1,...,αd
≡ Sk1,...,kdα1,...,αd

(Mh) := span
{
Bk1,...,kd
i1,...,id

}n1,...,nd

i1=1,...,id=1
. (22)

Like their univariate counterparts, multivariate B-spline basis functions are piece-
wise polynomial, form a partition of unity, have local support, and are non-negative.
Defining the regularity constant

α := min
l=1,...,d

min
2≤il≤ml−1

{αil,l} (23)

we see that our B-splines are Cα-continuous throughout the domain Ω̂. Refinement of
multivariate B-spline bases is obtained by applying knot insertion and degree elevation
in tensor-product fashion. In the remainder of the text, we consider a family of
nested meshes {Mh}h≤h0 and associated B-spline spaces

{
Sk1,...,kdα1,...,αd

(Mh)
}
h≤h0

that

have been obtained by successive applications of knot refinement. Furthermore, we
assume throughout that the mesh family {Mh}h≤h0 is locally quasi-uniform.

Note that each element Q = ⊗l=1,...,d (ζil,l, ζil+1,l) has the equivalent representation
Q = ⊗l=1,...,d (ξjl,l, ξjl+1,l) for some index jl. With this in mind, we associate with each
element a support extension Q̃, defined as

Q̃ := ⊗l=1,...,d (ξjl−kl,l, ξjl+kl+1,l) . (24)

The support extension is the interior of the set formed by the union of the supports
of all B-spline basis functions whose support intersects Q. Note that each element
belongs to the support extension of at most Πl=1,...,d(2kl + 1) elements.

4.3 Piecewise Smooth Functions, Geometrical Mappings, and
Physical Mesh Entities

On the parametric meshMh, we define the space of piecewise smooth functions with
interelement regularity given by the vectors α1, . . . ,αd as

C∞α1,...,αd
= C∞α1,...,αd

(Mh) . (25)
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Precisely, a function in C∞α1,...,αd
is a function whose restriction to an element Q ∈Mh

admits a C∞ extension in the closure of that element and which has αil,l contin-
uous derivatives with respect to the lth coordinate along the internal mesh faces
{(x1, . . . , xd) : xl = ζil,l, ζjl′ ,l′ < xl′ < ζjl′+1,l

′ , l′ 6= l} for all il = 2, . . . ,ml − 1 and
jl′ = 1, . . . ,ml′ − 1. Note immediately that any function lying in the B-spline space
Sk1,...,kdα1,...,αd

also lies in C∞α1,...,αd
.

Unless specified otherwise, we assume throughout the rest of the paper that the
physical domain Ω ⊂ Rd can be exactly parametrized by a geometrical mapping

F : Ω̂ → Ω belonging to
(
C∞α1,...,αd

)d
with piecewise smooth inverse. We further

assume that the physical domain Ω is simply connected with connected boundary
∂Ω and the geometrical mapping is independent of the mesh family index h. A
geometrical mapping meeting our criteria could be defined utilizing B-splines or Non-
Uniform Rational B-Splines (NURBS) on the coarsest mesh Mh0 . For examples of
such mappings, see Chapter 2 of [13]. NURBS mappings are especially useful as they
can represent many geometries of scientific and engineering interest and are the main
tools employed in Computer Aided Design (CAD) software. Later in this paper, we
will utilize a polar mapping to solve a flow problem on a cylindrical geometry. The
geometrical mapping F naturally induces a mesh

Kh = {K : K = F(Q), Q ∈Mh} (26)

on the physical domain Ω. We define for each element K ∈ Kh a physical mesh size

hK = ‖DF‖L∞(Q)hQ (27)

where Q is the pre-image of K, and we also define the support extension K̃ = F(Q̃).
We define for a given mesh the global mesh size

h = max {hK , K ∈ Kh} .

Note that as the parametric mesh family {Mh}h≤h0 is locally quasi-uniform and the
geometrical mapping F is independent of the mesh family index h, the physical mesh
family {Kh}h≤h0 is also locally quasi-uniform. We refer to the physical domain Ω and

its pre-image Ω̂ interchangeably as the patch. It should be noted that, in general, the
domain Ω cannot be represented using just a single patch. Instead, multiple patches
must be employed. We will discuss further the multi-patch setting in Section 7.

We define on the parametric mesh a set of mesh faces F̂h = {F̂} where F̂ is a face
of one or more elements in Mh. We define the physical set of mesh faces as

Fh = {F = F(F̂ ) : F̂ ∈ F̂h}

and we define the boundary mesh to be

Γh = {F ∈ Fh : F ⊂ ∂Ω} .
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By construction,
∂Ω = ∪F∈ΓhF .

Note that for each face F ∈ Γh there is a unique K ∈ Kh such that F is a “face” of
K (in the sense that F is the image of a face of Q, the pre-image of K). We hence
define for such a face the mesh size

hF := hK .

One may also define hF to be the wall-normal mesh-size as is done in [3]. Such a
definition is more appropriate when stretched meshes are utilized in the presence of
layers.

Throughout the paper, we will utilize the terminology “a constant independent
of h”. When we employ such terminology, we simply indicate that the constant
will not depend on the given mesh and, in particular, its size. The constant may,
however, depend on the domain, the shape regularity of the parametric mesh family,
the polynomial degree and smoothness of the employed B-spline spaces, and global,
mesh-invariant measures of the parametric mapping.

5 Discretization of Velocity and Pressure Fields

In this section, we define the B-spline spaces which we will utilize to discretize the
velocity and pressure fields appearing in the steady Navier-Stokes problem. These
spaces are motivated by the recent theory of isogeometric discrete differential forms
[9, 10] and may be interpreted as smooth generalizations of Raviart-Thomas elements
[32]. We first define our discrete velocity and pressure spaces on the parametric

domain Ω̂ = (0, 1)d and then define discrete spaces on the physical domain Ω using
divergence- and integral-preserving transformations. We finish this section with a
presentation of local approximation estimates and trace inequalities for our discrete
velocity and pressure spaces. For a more in-depth discussion of the discrete velocity
and pressure spaces used in this paper, see Section 5 of [19].

5.1 Discrete Spaces on the Parametric Domain

Using the notation of the previous section and assuming that

α := min{|αl| : l = 1, . . . , d} ≥ 1,

we define the following two spaces:

V̂h :=

{
Sk1,k2−1
α1,α2−1 × S

k1−1,k2
α1−1,α2

if d = 2,

Sk1,k2−1,k3−1
α1,α2−1,α3−1 × S

k1−1,k2,k3−1
α1−1,α2,α3−1 × S

k1−1,k2−1,k3
α1−1,α2−1,α3

if d = 3,
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Q̂h :=

{
Sk1−1,k2−1
α1−1,α2−1 if d = 2,

Sk1−1,k2−1,k3−1
α1−1,α2−1,α3−1 if d = 3.

The space V̂h comprises our set of discrete velocity fields while Q̂h comprises our
set of discrete pressure fields. Note that as α ≥ 1, our discrete velocity fields are
H1-conforming. If we allow α = 0, our spaces collapse to standard Raviart-Thomas
mixed finite elements [32]. In order to deal with no-penetration boundary conditions,
we make use of the following constrained discrete spaces:

V̂0,h :=
{

v̂h ∈ V̂h : v̂h · n̂ = 0 on ∂Ω̂
}
,

Q̂0,h :=

{
q̂h ∈ Qh :

∫
Ω̂

q̂hdx̂ = 0

}
.

Above, n̂ denotes the outward-facing normal to ∂Ω̂. As specified in the introduction,
we choose to enforce no-slip boundary conditions weakly using Nitsche’s method [30].

Due to the special relationship given by (18), the spaces V̂0,h and Q̂0,h along with the
parametric divergence operator form the bounded discrete cochain complex

V̂0,h
d̂iv−−−→ Q̂0,h

where d̂iv is the divergence operator on the unit cube Ω̂. In fact, we have a much
stronger result due to the results of [9].

Proposition 5.1. There exist L2-stable projection operators Π̂0
V̂h

: H0(d̂iv; Ω̂) → V̂0,h

and Π̂0
Q̂h

: L2
0(Ω̂)→ Q̂0,h such that the following diagram commutes:

H0(d̂iv; Ω̂)
d̂iv−−−→ L2

0(Ω̂)

Π̂0
V̂h

y Π̂0
Q̂h

y
V̂0,h

d̂iv−−−→ Q̂0,h.

(28)

Furthermore, there exists a positive constant Ĉu independent of h such that

‖Π̂0
V̂h

v̂‖H1(Ω̂) ≤ Ĉu‖v̂‖H1(Ω̂), ∀v̂ ∈ H0(d̂iv; Ω̂) ∩ H1(Ω̂) . (29)

5.2 Discrete Spaces on the Physical Domain

To define our discrete velocity and pressure spaces on the physical domain, we intro-
duce the following pullback operators:

ιu(v) := det (DF) (DF)−1 (v ◦ F) , v ∈ H0(div; Ω) (30)

ιp(q) := det (DF) (q ◦ F) , q ∈ L2
0(Ω) (31)
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where DF is the Jacobian matrix of the parametric mapping F. The push-forward
given by (30), popularly known as the Piola transform, has two important properties:
(i) it preserves the nullity of normal components, (ii) it maps divergences to diver-
gences. On the other hand, the push-forward given by (31) has the property that it
preserves the nullity of the integral operator. Due to these properties, we have the
following commuting diagram:

H0(d̂iv; Ω̂)
d̂iv−−−→ L2

0(Ω̂)

ιu

x ιp

x
H0(div; Ω)

div−−−→ L2
0(Ω).

(32)

This motivates the use of the following discrete velocity and pressure spaces in the
physical domain:

V0,h :=
{

v ∈ H0(div; Ω) : ιu(v) ∈ V̂0,h

}
,

Q0,h :=
{
q ∈ L2

0(Ω) : ιp(q) ∈ Q̂0,h

}
.

Furthermore, we define the projectors Π0
Vh : H0(div; Ω) → V0,h and Π0

Qh : L2(Ω) →
Q0,h via the compositions

Π0
Qh := ι−1

u ◦ Π̂0
Q̂h
◦ ιu, Π0

Qh := ι−1
p ◦ Π̂0

Q̂h
◦ ιp.

Employing the preceding results and terminology as well as the smoothness properties
of the parametric mapping F , we arrive at the following proposition.

Proposition 5.2. The following diagram commutes:

H0(div; Ω)
div−−−→ L2

0(Ω)

Π0
Vh

y Π̂0
Q̂h

y
V0,h

div−−−→ Q0,h.

(33)

Furthermore, there exists a positive constant Cu independent of h such that

‖Π0
Vhv‖H1(Ω) ≤ Cu‖v‖H1(Ω), ∀v ∈ H0(div; Ω) ∩ H1(Ω) . (34)

We immediately have an inf-sup condition for our discrete velocity/pressure pair.

Proposition 5.3. There exists a positive constant β̊ independent of h such that the
following holds: for every qh ∈ Q0,h, there exists a vh ∈ V0,h such that:

divvh = qh (35)
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and
‖vh‖H1(Ω) ≤ β̊−1‖qh‖L2(Ω). (36)

Hence,

inf
qh∈Q0,h

qh 6=0

sup
vh∈V0,h

(divvh, qh)L2(Ω)

‖vh‖H1(Ω)‖qh‖L2(Ω)

≥ β̊. (37)

Proof. See the proof of Proposition 5.3 in [19].

We also have the following result.

Proposition 5.4. If vh ∈ V0,h satisfies

(divvh, qh)L2(Ω) = 0, ∀qh ∈ Q0,h, (38)

then divvh ≡ 0.

Proof. The proof holds trivially as div maps V0,h onto Q0,h.

Hence, by choosing V0,h and Q0,h as discrete velocity and pressure spaces, we
arrive at a discretization that automatically returns velocity fields that are pointwise
divergence-free.

5.3 Approximation Results and Trace Inequalities

Let us define
k′ = min

l=1,...,d
|kl − 1| . (39)

Note that the discrete velocity and pressure spaces V0,h and Q0,h consist of mapped
piecewise polynomials which are complete up to degree k′. Hence, k′ may be thought
of as the polynomial degree of our discretization technique. The following result
details the local approximation properties of our discrete spaces. Its proof may be
found in [9].

Proposition 5.5. Let K ∈ Kh and K̃ denote the support extension of K. For
0 ≤ j ≤ s ≤ k′ + 1, we have

|v− Π0
Vhv|Hj(K) ≤ Chs−jK ‖v‖Hs(K̃), ∀v ∈ Hs(K̃) ∩ H0(div; Ω) (40)

|q − Π0
Qh q|Hj(K) ≤ Chs−jK ‖q‖Hs(K̃), ∀q ∈ Hs(K̃) ∩ L2

0(Ω) (41)

where C denotes a positive constant, possibly different at each appearance, independent
of h.
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Hence, our discrete spaces deliver optimal rates of convergence from an approxi-
mation point of view. We will also need the following trace estimate in our ensuing
mathematical analysis. Its proof can be found in [16].

Proposition 5.6. Let K ∈ Kh and Q = F−1(K). Then we have

‖ (∇svh) n‖(L2(∂K))d ≤ Ctraceh
−1
K ‖vh‖H1(K), ∀vh ∈ V0,h (42)

where Ctrace denotes a positive constant independent of h.

In [18], it was shown that Proposition 5.6 holds for B-splines and parametric finite
elements with Ctrace ∼ (k′)2. However, our numerical experience has indicated that
a corresponding global trace inequality holds with Ctrace ∼ k′ if B-splines of maximal
continuity are utilized. This allows us to select a smaller penalty parameter when
employing Nitsche’s method. As we will see in the next section, our convergence
estimates scale inversely with the square root of Nitsche’s penalty parameter. Hence,
we want to select Nitsche’s penalty parameter as small as possible.

6 The Discretized Problem

In this section, we approximate the homogeneous steady Navier-Stokes problem using
the discrete velocity and pressure spaces introduced in the previous section. We prove
continuity, stability, and a priori estimates for our discretization scheme in the single
patch setting under a smallness condition, and we explicitly track all of our estimates’
dependencies on the viscosity and Nitsche’s penalty parameter.

6.1 Variational Formulation

We begin this section by presenting a discrete variational formulation for the steady
Navier-Stokes problem. Since members of V0,h do not satisfy homogeneous tangential
Dirichlet boundary conditions, we resort to Nitsche’s method to weakly enforce no-slip
boundary conditions. Defining the bilinear form

kh(w,v) = k(w,v)−
∑
F∈Γh

∫
F

2ν

(
((∇sv) n) ·w + ((∇sw) n) · v− Cpen

hF
w · v

)
ds

(43)
where Cpen ≥ 1 is a chosen positive penalty constant, our discrete formulation is
written as follows.

(G)


Find uh ∈ V0,h and ph ∈ Q0,h such that

kh(uh,vh) + c(uh,uh; vh)− b(ph,vh) + b(qh,uh) = (f,vh)L2(Ω) (44)

for all vh ∈ V0,h, qh ∈ Q0,h.

We have the following lemma detailing the consistency of our numerical method.
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Lemma 6.1. Suppose that (u, p) is a solution of (W ) satisfying the regularity con-
dition u ∈ H3/2+ε(Ω) for some ε > 0. Then:

kh(u,vh) + c(u,u; vh)− b(p,vh) + b(qh,u) = (f ,vh)L2(Ω) (45)

for all vh ∈ V0,h and qh ∈ Q0,h.

Proof. We trivially have
b(qh,u) = 0, ∀qh ∈ Q0,h.

Now let vh ∈ V0,h. By the Sobolev trace theorem, the assumption u ∈ H3/2+ε(Ω)
guarantees that (∇su) n is well-defined along ∂Ω and (∇su) n ∈ (L2(∂Ω))d. Hence,
the quantity kh(u,vh) is well-defined. Utilizing integration by parts and the fact that
u satisfies homogeneous Dirichlet boundary conditions and vh satisfies homogeneous
normal Dirichlet boundary conditions, we have

kh(u,vh) + c(u,u; vh)− b(p,vh) =

∫
Ω

(∇ · (u⊗ u)−∇ · (2ν∇su) + gradp) · vh

=

∫
Ω

f · vh

= (f,vh)L2(Ω).

This completes the proof of the lemma.

We have the following relationship between the exact solution and a numerical
solution.

Corollary 6.1. Let (uh, ph) denote a solution of (G), and let (u, p) denote a solution
of (W ) satisfying the regularity condition u ∈ H3/2+ε(Ω) for some ε > 0. Then:

kh(u− uh,vh) + c(u,u,vh)− c(uh,uh,vh)
−b(p− ph,vh) + b(qh,u− uh) = 0 (46)

for all vh ∈ V0,h and qh ∈ Q0,h.

Finally, by Proposition 5.4, we have the following lemma.

Lemma 6.2. Let (uh, ph) denote a solution of (G). Then:

divuh ≡ 0 (47)

Weak imposition of no-slip boundary conditions allows our methodology to default
automatically to a compatible discretization of Euler flow in the setting of vanishing
viscosity. Moreover, for large Reynolds number flows, there is a sharp boundary layer
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in the vicinity of walls. Utilzing Nitsche’s method allows us to account for these layers
in a stable and consistent manner without having to directly resolve them [2, 3, 4]. In
fact, Nitsche’s method can be interpreted as a variationally consistent wall model. To
better see this interpretation, let us formally rewrite our discrete variational equations
as∫

Ω

T : ∇svhdx−
∑
F∈Γh

∫
F

Q · vhds + c(uh,uh; vh)− b(ph,vh) + b(qh,uh) = (f,vh)L2(Ω)

(48)
where T is a symmetric tensor satisfying∫

Ω

T : Wdx =

∫
Ω

2ν∇suh : Wdx−
∑
F∈Γh

∫
F

2νuh · (Wn) ds

=

∫
Ω

2νuh · divWdx (in the sense of distributions) (49)

for symmetric tensors W with well-defined normal trace and Q a vector satisfying

Q = 2ν

(
(∇suh) n− Cpen

h
uh

)
. (50)

Above, T is a weakly defined viscous stress tensor and Q is the resultant viscous
boundary traction vector. In the event that the no-slip boundary condition is met
exactly, we recover T ≡ 2ν∇suh and Q ≡ 2ν (∇suh) n. Otherwise, the definitions
of T and Q are changed accordingly. The tangential component of Q given by (50),
denoted Qtang, and calculated as

Qtang = Q− (Q · n) n, (51)

is the effective wall shear stress vector.
As the discrete velocity field satisfies the no-penetration boundary condition strongly,

the vector Q is equal to the discrete shear stress 2ν (∇suh) n plus an additional wall
shear stress term Q+ in the direction tangent to the wall. Specifically, we have

Q+ = −u∗2 uh
‖uh‖

(52)

where

u∗2 =
2νCpen‖uh‖

h
. (53)

For under-resolved flow simulations, the magnitude of (∇suh) n in the direction tan-
gent to the wall is relatively small and, as such, the tangential component of Q is
dominated by Q+. In this sense, Q+ becomes a model for the wall shear stress. As
the mesh is refined and the flow is resolved, Q+ → 0. The above interpretation allows
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us to design physically motivated penalty values for Nitsche’s penalty parameter. No-
tably, u∗ may be interpreted as the friction velocity. By specifying the value of u∗

using Spalding’s law of the wall [36], we recover a standard wall model for under-
resolved flow simulations. For more on this approach, see Section 3 of [3]. We recall,
however, that the numerically inspired (53) produced results of the same quality as
the u∗ given by Spalding’s physically inspired law of the wall.

Remark 6.1. If we wish to impose non-homogeneous tangential Dirichlet (e.g., pre-
scribed slip) boundary conditions, we must add the following expression to the right
hand side of our discrete formulation:

fN(vh) =
∑
F∈Γh

∫
F

2ν

(
− ((∇svh) n) · uBC +

Cpen
hF

uBC · vh
)
ds (54)

where uBC is a prescribed vector function defined on ∂Ω. If we also wish to impose
non-homogeneous normal Dirichlet (e.g., prescribed penetration) boundary conditions,
we must impose these strongly and add the following expression to the left hand side
of our discrete formulation:

cUW (uh,vh) =
∑
F∈Γh

∫
F

(uBC · n)+ uh · vhds (55)

and the following expression to the right hand side of our discrete formulation:

fUW (vh) = −
∑
F∈Γh

∫
F

(uBC · n)− uBC · vhds (56)

where

(uBC · n)+ =

{
uBC · n if uBC · n > 0

0 otherwise

and

(uBC · n)− =

{
uBC · n if uBC · n ≤ 0

0 otherwise.

These additional terms correspond to upwinding.

6.2 Well-Posedness for Small Data

We now prove that our discrete formulation is well-posed under a smallness condition.
Our method of proof mimics that of the continuous problem (see Theorem 10.1.1 of
[22]). To begin, let us define the following mesh-dependent norm:

‖v‖2
h := |v|2H1(Ω) +

∑
F∈Γh

hF‖ (∇sv) n‖2
(L2(F ))d +

∑
F∈Γh

Cpen
hF
‖v‖2

(L2(F ))d . (57)
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We will also denote

V̊0,h := {vh ∈ V0,h : divvh = 0} = {vh ∈ V0,h : b(qh,vh) = 0, ∀qh ∈ Q0,h} .

To proceed, we need to call upon stability and continuity results that were proven in
[19] for divergence-conforming B-spline discretizations of the Darcy-Stokes-Brinkman
equations. These results hinge upon two assumptions regarding the size of Cpen. First,
in light of Proposition 5.6, we assume that

Cpen ≥ 4hKC
2
PoinCKorn

‖ (∇svh) n‖2
(L2(∂K))d

‖vh‖2
H1(K)

, ∀K ∈ Kh, vh ∈ V0,h (58)

where CPoin is the Poincaré constant appearing in (10) and CKorn is the positive
constant associated with the following Korn’s inequality [6]:

|w|2H1(Ω) ≤ CKorn

(
‖∇sw‖2

(L2(Ω))d×d + |∂Ω|−1/(d−1)‖w‖2
(L2(∂Ω))d

)
, ∀w ∈ H1(Ω) .

Second, we assume that
Cpen ≥ 4h0|∂Ω|−1/(d−1) (59)

where h0 is the mesh size of the coarsest mesh K0 and |∂Ω| denotes the length of ∂Ω for
d = 2 and the area of ∂Ω for d = 3. This second assumption is necessary as rotation
modes carry zero energy. Hence, weak boundary conditions are needed to control these
modes in rotationally symmetric (or near rotationally symmetric) configurations. As
such configurations are of significant engineering interest, we believe that any analysis
results should cover these situations. Note that a constant Cpen satisfying the above
assumption need not depend on h or ν. Rather, it only needs to depend on the
size of the domain, the polynomial degree and smoothness of the discretization, the
parametric shape regularity, and global, mesh-invariant measures of the parametric
mapping.

Corollary 6.2. Assume (58) and (59) are satisfied. Then we have

kh(w,v) ≤ 2νCcont‖w‖h‖v‖h, ∀w,v ∈ V0,h ⊕
(

H1
0(Ω) ∩H3/2+ε(Ω)

)
(60)

b(p,v) ≤ ‖p‖L2(Ω)‖v‖h ∀p ∈ L2
0(Ω),v ∈ V0,h ⊕

(
H1

0(Ω) ∩H3/2+ε(Ω)
)
(61)

kh(wh,wh) ≥ 2νCcoerc‖wh‖2
h, ∀wh ∈ V̊0,h (62)

where ε > 0 is an arbitrary positive number and Ccont and Ccoerc are positive constants
which are independent of h, ν, Cpen, and ε. Furthermore, we have

inf
qh∈Q0,h,qh 6=0

sup
vh∈V0,h

(divvh, qh)

‖vh‖V(h)‖qh‖Q
≥ β̃. (63)

where β̃ is a positive constant independent of h and ν which asymptotically scales
inversely with the square root of Cpen.
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We will also need the following two lemmas. The first lemma gives a Lipschitz
continuity result for the trilinear form c(·, ·; ·). This result hinges upon Sobolev em-
beddings which exist because our domain is Lipschitz. The second lemma gives a
semi-coercivity result for the trilinear form c(·, ·; ·).

Lemma 6.3. There exists a constant C0 only dependent on Ω such that

c(w1,x; v)− c(w2,x; v) ≤ C0|w1 −w2|H1(Ω)|x|H1(Ω)|v|H1(Ω) (64)

for all w1,w2,x,v ∈ H1(Ω) ∩ H0(div; Ω).

Proof. Let w1,w2,x,v ∈ H1(Ω) ∩ H0(div; Ω) be arbitrary. Note that since ∂Ω is
Lipschitz, we have the continuous embedding

H1(Ω) ↪→ L4(Ω).

By linearity and the Cauchy-Schwarz inequality, we can then write

c(w1,x; v)− c(w2,x; v) = − ((w1 −w2)⊗ x,∇v)(L2(Ω))d×d

≤ ‖w1 −w2‖L4(Ω)‖x‖L4(Ω)‖∇v‖(L2(Ω))d×d .

Let Cembed denote the positive embedding constant dependent only on the domain Ω
such that

‖y‖L4(Ω) ≤ Cembed‖y‖H1(Ω), ∀y ∈ H1(Ω) .

Then we have

c(w1,x; v)− c(w2,x; v) ≤ C2
embed‖w1 −w2‖H1(Ω)‖x‖H1(Ω)‖∇v‖(L2(Ω))d×d .

The lemma follows with C0 = C2
embedC

2
poin where CPoin is the Poincaré constant ap-

pearing in (10).

Lemma 6.4. Suppose w,v ∈ H1(Ω) ∩ H0(div; Ω) such that divw = 0. Then

c(w,v; v) = 0. (65)

Proof. We write

c(w,v; v) = −
∫

Ω

(w ⊗ v) : ∇vdx.

Since divw = 0, we have

c(w,v; v) = −1

2

∫
Ω

div
(
w|v|2

)
dx.

The lemma is then simply a result of the divergence theorem.
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With Corollary 6.2 and Lemmata 6.3 and 6.4, we can prove the following propo-
sition which gives the well-posedness of the linearized Oseen problem.

Proposition 6.1. Let w ∈ H1(Ω) ∩ H0(div; Ω) such that divw = 0, and assume
(58) and (59) are satisfied. Then the following problem has a unique solution: find
(xh, rh) ∈ V0,h ×Q0,h such that

kh(xh,vh) + c(w,xh; vh)− b(rh,vh) + b(qh,xh) = (f ,vh)L2(Ω) (66)

for all vh ∈ V0,h, qh ∈ Q0,h. Furthermore, the unique solution of the linearized Oseen
problem satisfies divxh = 0 and the bound

‖xh‖h ≤
CPoin

2νCcoerc
‖f‖L2(Ω) (67)

where CPoin is the Poincaré constant appearing in (10) and Ccoerc is the coercivity
constant appearing in Corollary 6.2.

Proof. Existence and uniqueness are a direct result of Brezzi’s theorem, Corollary 6.2,
and Lemmata 6.3 and 6.4. Since divV0,h = Q0,h, we automatically have divxh = 0.
To prove the a priori bound, we write using (66) and the coercivity of kh(·, ·)

‖xh‖2
h ≤

1

2νCcoerc
kh(xh,xh)

=
1

2νCcoerc

(
(f,xh)L2(Ω) − c(w,xh; xh)− b(rh,xh)

)
.

Using Lemma 6.4 to set c(w,xh; xh) = 0 and divxh = 0 to set b(rh,xh) = 0, we can
complete the proof:

‖xh‖2
h ≤

1

2νCcoerc
(f,xh)L2(Ω)

≤ 1

2νCcoerc
‖f‖L2(Ω)‖xh‖L2(Ω)

≤ CPoin
2νCcoerc

‖f‖L2(Ω)|xh|H1(Ω).

We are now ready to establish well-posedness results for the full Navier-Stokes
problem. To do so, we will attempt to obtain the solution to the discrete Navier-Stokes
problem through the iterative solution of a sequence of Oseen problems. Notably,
given u0 ∈ V̊0,h, we seek the limit of the following iterative solution process: for
i = 1, 2, 3, . . . find (ui, pi) ∈ V0,h ×Q0,h such that

kh(ui,vh) + c(ui−1,ui; vh)− b(pi,vh) + b(qh,ui) = (f,vh)L2(Ω) (68)
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for all vh ∈ V0,h, qh ∈ Q0,h. Well-posedness hinges upon the convergence of this
iterative solution process, and convergence of this process is further contingent upon
a small data constraint.

Theorem 6.1. Assume (58) and (59) are satisfied, and further assume that

C0CPoin
(2ν)2C2

coerc

‖f‖L2(Ω) < 1 (69)

where C0 is the continuity constant appearing in Lemma 6.3, CPoin is the Poincaré
constant appearing in (10), and Ccoerc is the coercivity constant appearing in Corollary
6.2. Then Problem (G) has a unique solution (uh, ph) ∈ V0,h × Q0,h. Furthermore,
the unique solution satisfies

‖uh‖h ≤
CPoin

2νCcoerc
‖f‖L2(Ω) (70)

‖ph‖L2(Ω) ≤ β̃−1

(
C0CPoin

(2ν)2C2
coerc

+
Ccont
Ccoerc

+ 1

)
CPoin‖f‖L2(Ω) (71)

where β̃ and Ccont are the inf-sup and continuity constants appearing in Corollary
6.2.

Proof. Begin by defining S : V̊0,h → V̊0,h to be the nonlinear operator which returns
the divergence-free velocity solution of (66) given a divergence-free velocity field wh ∈
V̊0,h. Note that by Proposition 6.1

‖S(wh)‖h ≤
CPoin

2νCcoerc
‖f‖L2(Ω).

Therefore, the nonlinear operator S maps V̊0,h into

Bh :=

{
wh ∈ V̊0,h : ‖wh‖h ≤

CPoin
2νCcoerc

‖f‖L2(Ω)

}
.

Now, let w1,w2 ∈ V̊0,h and w1 = S(w1), w2 = S(w2). By using the coercivity of
kh(·, ·) given by Corollary 6.2 we have

2νCcoerc‖w1 −w2‖2
h ≤ kh(w1 −w2,w1 −w2). (72)

By (66), we have

kh(w1,w1 −w2) = −c(w1,w1,w1 −w2) + (f,w1 −w2)L2(Ω)

and
kh(w2,w1 −w2) = −c(w2,w2,w1 −w2) + (f,w1 −w2)L2(Ω)
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since div (w1 −w2) = 0. Hence,

2νCcoerc‖w1 −w2‖2
h ≤ c(w2,w2,w1 −w2)− c(w1,w1,w1 −w2)

= −c(w2,w1 −w2,w1 −w2)

+ c(w2,w1,w1 −w2)− c(w1,w1,w1 −w2).

By the continuity and coercivity properties given in Lemmata 6.3 and 6.4, we can
write

2νCcoerc‖w1 −w2‖2
h ≤ C0‖w2 −w1‖h‖w1‖h‖w1 −w2‖h.

Since w1 ∈ Bh, we thus have

‖w1 −w2‖h ≤ µ‖w2 −w1‖h

where µ is precisely

µ =
C0CPoin

(2ν)2C2
coerc

‖f‖L2(Ω).

By assumption µ < 1, and we therefore have proved S is a contractive map. By the
Banach fixed point theorem, the nonlinear problem

uh = S(uh)

has a unique solution which lies in Bh and is precisely the discrete velocity solution
(now proven unique) of Problem (G). Given uh, uniqueness of the discrete pressure
solution ph is a direct result of the inf-sup condition.

We now prove the stability bounds. The bound for uh is straight-forward since
uh ∈ Bh. To prove the bound for ph, we utilize the inf-sup condition, the continuity
of kh(·, ·), the continuity of c(·, ·; ·), and Poincaré’s inequality:

β̃‖ph‖L2(Ω) ≤ sup
vh∈V0,h

b(ph,vh)

‖vh‖h

= sup
vh∈V0,h

−(f,vh)L2(Ω) + kh(uh,vh) + c(uh,uh; vh)

‖vh‖h

≤ sup
vh∈V0,h

‖f‖L2(Ω)‖vh‖L2(Ω) + 2νCcont‖uh‖h‖vh‖h + C0‖uh‖2
h‖vh‖h

‖vh‖h

≤ sup
vh∈V0,h

CPoin‖f‖L2(Ω)‖vh‖h + 2νCcont‖uh‖h‖vh‖h + C0‖uh‖2
h‖vh‖h

‖vh‖h
.

The result then follows by invoking the bound for uh.
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To the best of our knowledge, the above theorem is the first of its kind for H1

quadrilateral- and hexahedral-based spline finite element discretizations written in
divergence-form. Such a result also hypothetically exists for Scott-Vogelius discretiza-
tions on tetrahedra [41], but these discretizations are limited to an extremely restric-
tive class of macro-element meshes. Well-posedness gives us the confidence that, at
the very least, our formulation gives a unique solution under a smallness condition
not unlike that for the continuous problem. In the next section, we will show that
our discrete solution converges to the exact solution under a slightly more restrictive
smallness condition.

It is interesting to note that the proof of Theorem 6.1 guarantees that the fixed
point iteration given by (68) converges to the exact solution for any initial divergence-
free velocity field. Furthermore, the iterates exhibit the linear convergence rate

‖un+1 − un‖h ≤ µn‖u1 − u0‖h

for

µ =
C0CPoin

(2ν)2C2
coerc

‖f‖L2(Ω) < 1.

This fixed-point scheme can be accelerated using a Newton-Raphson procedure.

6.3 A Priori Error Estimates for Small Data

We are now ready to show that our discrete solution fields converge to the exact
solution fields under smallness and regularity conditions. Our method of proof largely
mimics that of Theorem 4.8 in [11] for the two-dimensional Navier-Stokes equations.
However, our proof is more straight-forward, primarily due to four facts: (1) we
employ natively divergence-free discretizations, (2) we employ smooth approximation
spaces, (3) we have a simpler treatment of the convection operator, and (4) we do
not include stress as an auxiliary variable.

Our first error estimate reads as follows. Note that it is explicit in the mesh-size
h, the diffusivity ν, and the penalty parameter Cpen.

Theorem 6.2. Assume (58) and (59) are satisfied, and further assume that

max

{
C0CPoin

(2ν)2C2
coerc

,
CΩCPoin

ν2
,
C0CPoin
ν2Ccoerc

}
‖f‖L2(Ω) < 1 (73)

where C0 is the continuity constant appearing in Lemma 6.3, CPoin is the Poincaré
constant appearing in (10), CΩ is the domain-dependent constant appearing in The-
orem 3.1, and Ccoerc is the coercivity constant appearing in Corollary 6.2. Let (u, p)
and (uh, ph) denote the solutions of Problems (W ) and (G) respectively. Under the
assumption that u ∈ H3/2+ε(Ω) for some ε > 0, we have

‖u− uh‖h ≤ (1 + 2κγ) inf
vh∈V̊0,h

‖u− vh‖h (74)
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and

‖p− ph‖L2(Ω) ≤
(

1 +
1

β̃

)
inf

qh∈Q0,h

‖p− qh‖L2(Ω) +
κ

β̃
‖u− uh‖h (75)

where

κ = 2νCcont +

(
1 +

1

2Ccoerc

)
C0CPoin

ν
‖f‖L2(Ω) < 2ν

(
Ccont + 2C2

coerc + Ccoerc
)
, (76)

γ =
1

2νCcoerc
, (77)

and β̃ and Ccont are the inf-sup and continuity constants appearing in Corollary 6.2.

Proof. We begin by proving the estimate for the velocity error. Let vh ∈ V̊0,h such

that divvh = 0. By the coercivity of kh(·, ·) over V̊0,h, we have

2νCcoerc‖vh − uh‖2
h ≤ kh(vh − uh,vh − uh).

By the consistency given by Corollary 6.1 and the divergence-free condition div(vh−
uh) = 0, we have

kh(vh − uh,vh − uh) = kh(vh − u,vh − uh)

− c(u,u; vh − uh) + c(uh,uh; vh − uh).

Then, by using the continuity of kh(·, ·), we can write

2νCcoerc‖vh − uh‖2
h ≤ kh(vh − u,vh − uh)

− c(u,u; vh − uh) + c(uh,uh; vh − uh)

≤ 2νCcont‖vh − u‖h‖vh − uh‖h + T (78)

where

T := −c(u,u; vh − uh) + c(uh,uh; vh − uh).

We now utilize a splitting. Let us decompose

T = T1 + T2 + T3 + T4 (79)

where

T1 = −c(vh,u; vh − uh) + c(uh,u; vh − uh)

T2 = −c(uh,vh − uh; vh − uh)

T3 = c(vh,u; vh − uh)− c(u,u; vh − uh)

T4 = c(uh,vh − u; vh − uh).
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By Lemma 6.3, we can write

T1 ≤ C0|u|H1(Ω)‖vh − uh‖2
h

T3 ≤ C0|u|H1(Ω)‖vh − uh‖h‖vh − u‖h
T4 ≤ C0‖uh‖h‖vh − uh‖h‖vh − u‖h

and by Lemma 6.4, we have

T2 = 0. (80)

Theorems 3.1 and 6.1 immediately give the bounds

T1 ≤
C0CPoin

ν
‖f‖L2(Ω)‖vh − uh‖2

h. (81)

T3 ≤
C0CPoin

ν
‖f‖L2(Ω)‖vh − uh‖h‖vh − u‖h (82)

T4 ≤
C0CPoin
2νCcoerc

‖fh‖L2(Ω)‖vh − uh‖h‖vh − u‖h (83)

Substituting (79), (80), (81), (82), and (83) into (78), we obtain

(1− α) ‖vh − uh‖h ≤ κγ‖vh − u‖h

where

α =
C0CPoin
2ν2Ccoerc

‖f‖L2(Ω),

γ =
1

2νCcoerc
,

and

κ = 2νCcont +

(
1 +

1

2Ccoerc

)
C0CPoin

ν
‖f‖L2(Ω).

By assumption, α < 1/2 and hence

‖vh − uh‖h ≤ 2κγ‖vh − u‖h.

To finish the proof for the velocity error, we perform a sum decomposition as follows:

‖u− uh‖h ≤ inf
vh∈V̊0,h

(‖u− vh‖h + ‖vh − uh‖h)

≤ (1 + 2κγ) inf
vh∈V̊0,h

‖u− vh‖h.

We now proceed to the estimate for the pressure error. Let qh ∈ Q0,h. By the
inf-sup condition, we have

‖qh − ph‖L2(Ω) ≤
1

β̃
sup

vh∈V0,h

b(qh − ph,vh)
‖vh‖h

. (84)
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By the consistency given by Corollary 6.1, we have, for any vh ∈ V0,h,

b(qh − ph,vh) = b(qh − p,vh) + kh(u− uh,vh)

+ c(u,u; vh)− c(uh,uh; vh)
= b(qh − p,vh) + kh(u− uh,vh)

+ c(u,u− uh; vh) + c(u− uh,uh; vh).

Our continuity estimates from Corollary 6.2 and Lemma 6.3 then give the bound

b(qh − ph,vh) ≤(
‖qh − p‖L2(Ω) +

(
2νCcont + C0

(
|u|H1(Ω) + ‖uh‖h

))
‖u− uh‖h

)
‖vh‖h.

Theorems 3.1 and 6.1 give

2νCcont + C0

(
|u|H1(Ω) + ‖uh‖h

)
≤ κ,

so we can write

b(qh − ph,vh) ≤
(
‖qh − p‖L2(Ω) + κ‖u− uh‖h

)
‖vh‖h.

Substituting the above expression into (84), we acquire the estimate

‖qh − ph‖L2(Ω) ≤
1

β̃
‖qh − p‖L2(Ω) +

κ

β̃
‖u− uh‖h.

To finish the proof for the pressure error, we again perform a sum decomposition as
follows:

‖p− ph‖L2(Ω) ≤ inf
qh∈Q0,h

(
‖p− qh‖L2(Ω) + ‖qh − ph‖L2(Ω)

)
≤
(

1 +
1

β̃

)
inf

qh∈Q0,h

‖p− qh‖L2(Ω) +
κ

β̃
‖u− uh‖h.

Our next error estimate gives us a priori convergence estimates that are optimal
for the discrete velocity field and suboptimal, by one order, for the discrete pressure
field.

Theorem 6.3. Let the assumptions of Theorem 6.2 hold true. Furthermore, let (u, p)
and (uh, ph) denote the solutions of Problems (W ) and (G), respectively. Under the
assumption that u ∈ Hj+1(Ω) and p ∈ Hj(Ω) for some j > 1/2, we have

‖u− uh‖h ≤ Cu (1 + 2κγ)hs‖u‖Hs+1(Ω) (85)
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and

‖p− ph‖L2(Ω) ≤ Cp

(
1 +

1

β̃

)
hs‖p‖Hs(Ω) +

κ

β̃
‖u− uh‖h (86)

for s = min{k′, j} where κ is defined by (76), γ is defined by (77), β̃ is the discrete inf-
sup constant, Cu is a positive constant independent of h and ν which asymptotically
scales with the square root of Cpen, and Cp is a positive constant independent of h, ν,
and Cpen.

Proof. We first prove (85). Recall the error estimate given by (74):

‖u− uh‖h ≤ (1 + 2κγ) inf
vh∈V̊0,h

‖u− vh‖h.

Noting div Π0
Vhu = Π0

Qh divu = 0, we can choose vh = Π0
Vhu in the above expression

to obtain

‖u− uh‖h ≤ Cco
√
T1 + T2 + T3 (87)

where we have assigned Cco = (1 + 2κγ) and

T1 = |u− Π0
Vhu|2H1(Ω) (88)

T2 =
∑
F∈Γh

hF‖
(
∇s
(
u− Π0

Vhu
))

n‖2
(L2(F ))d (89)

T3 =
∑
F∈Γh

Cpenh
−1
F ‖u− Π0

Vhu‖2
(L2(F ))d . (90)

To handle the face integral in (89), we recruit the multiplicative trace inequality
for fractional Sobolev spaces [38] and Young’s inequality element-wise to obtain the
bound ∑

F∈Γh

hF‖
(
∇s
(
u− Π0

Vhu
))

n‖2
(L2(F ))d ≤

(Ctrc,1)2
∑
K∈Kh

(
|u− Π0

Vhu|2H1(K) + h2q
K |u− Π0

Vhu|2Hq+1(Ω)

)
where 1/2 < q ≤ s and Ctrc,1 is a positive constant independent of h, ν, and Cpen. To
handle the face integral in (90), we recruit the standard continuous trace inequality
element-wise to obtain the bound ∑

F∈Γh

Cpenh
−1
F ‖u− Π0

Vhu‖2
(L2(F ))d ≤

(Ctrc,2)2
∑
K∈Kh

(
h−2
K ‖u− Π0

Vhu‖2
L2(K) + |u− Π0

Vhu|2H1(K)

)

27



where Ctrc,2 is a positive constant independent of h and ν which varies linearly with
the square root of Cpen. It should be noted the two constants Ctrc,1 and Ctrc,2 neces-
sarily depend on the shape regularity of the mesh family {Q}h≤h0 and the parametric
mapping which together give the shape regularity of the mesh family {K}h≤h0 . See
[18] for more details. Inserting the above two inequalities into (87) and then applying
Proposition 5.5, we immediately acquire the bound

‖u− Π0
Vhu‖h ≤ CuCcoh

s‖u‖Hs+1(Ω)

for Cu a positive constant independent of h and ν with the same functional depen-
dency on the penalty parameter as Ctrc,2.

The proof for (86) is much more immediate. Choosing qh = Π0
Qh p in the error

estimate given by (75), one obtains

‖p− ph‖L2(Ω) ≤
(

1 +
1

β̃

)
‖p− Π0

Qh p‖L2(Ω) +
κ

β̃
‖u− uh‖h (91)

Inequality (86) follows by an application of Proposition 5.5 to bound the pressure
interpolation error.

Again, to the best of our knowledge, Theorems 6.2 and 6.3 are the first of their
kind for H1 quadrilateral- and hexahedral-based spline finite element discretizations
written in divergence-form. Note that we have obtained error estimates which are
optimal for the velocity field and suboptimal, by one order, for the pressure field
under a smallness condition not unlike that of the continuous problem. In Section
8, we will employ a selection of problems with known analytical solutions to confirm
our theoretical convergence rates. Our numerical results will suggest our derived
pressure error estimates may be conservative. The analysis presented here also covers
singular solutions typically encountered in practice. We also numerically study the
effectiveness of our method for a singular test problem, lid-driven cavity flow.

7 Extension to Multi-Patch Domains

As was mentioned previously, most geometries of scientific and engineering interest
cannot be represented by a single patch. Instead, the multi-patch concept must be
invoked. We assume that there exist np sufficiently smooth parametric mappings
Fi : (0, 1)d → Rd such that the subdomains

Ωi = Fi

(
Ω̂
)
, i = 1, . . . , np

are non-overlapping and
Ω = ∪npi=1Ωi.
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Figure 1: Example multi-patch construction in R2.

We refer to each subdomain Ωi (and its pre-image) as a patch. For a visual depiction
of a multi-patch construction in R2, see Figure 1. We build discrete velocity and
pressure spaces over each patch Ωi, i = 1, . . . , np in the same manner as in the
previous sections except that we do not yet enforce boundary conditions, and we
denote these spaces as Vh(Ωi) and Qh(Ωi).

To proceed further, we must make some assumptions. First of all, we assume that
if two disjoint patches Ωi and Ωj have the property that ∂Ωi ∩ ∂Ωj 6= ∅, then this
intersection consists strictly of patch faces, edges, and corners. More succinctly, two
patches cannot intersect along an isolated portion of a face (or edge) interior. Second,
we assume that the mappings {Fi}npi=1 are compatible in the following sense: if two
patches Ωi and Ωj share a face, then Fi and Fj parametrize that face identically up
to changes in orientation. Third, we assume that if two patches Ωi and Ωj share a
face, the B-spline meshes associated with the patches are identical along that face.
This guarantees our mesh is conforming. Finally, we assume for simplicity that k1 =
. . . = kd = k∗ for all patches. The mixed polynomial degree case introduces additional
complications that are beyond the scope of this work. We would like to note that all
four assumptions hold if we employ a conforming NURBS multi-patch construction.
See, for example, Chapter 2 of [13].
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We define our global discrete velocity and pressure spaces as follows:

V0,h := {vh ∈ H0 (div; Ω) : vh|Ωi ∈ Vh(Ωi), ∀i = 1, . . . , np} , (92)

Q0,h :=
{
qh ∈ L2

0 (Ω) : qh|Ωi ∈ Qh(Ωi), ∀i = 1, . . . , np
}
. (93)

The space V0,h is easily constructed due to our preceding four assumptions and use
of open knot vectors. Specifically, we set to zero the coefficient of any basis function
whose normal component is nonzero along ∂Ω, and along shared faces between patches
we (i) equivalence the coefficients of any basis functions whose normal components
are nonzero and equal in magnitude and direction and (ii) set the coefficient of one to
minus the coefficient of another for any basis functions whose normal components are
nonzero, equal in magnitude, and opposite in direction. We note that this is precisely
the same procedure as is used to construct Raviart-Thomas spaces on conforming
finite element meshes. We simply have patches instead of elements. It is easily shown
that the spaces V0,h and Q0,h, along with the divergence operator, form the bounded
discrete cochain complex

V0,h
div−−−→ Q0,h.

However, functions in V0,h do not necessarily lie in H1(Ω) as tangential continuity
is not enforced across patch interfaces. Hence, we need to account for this lack
of continuity when designing a discretization scheme for the steady Navier-Stokes
equations. We weakly enforce tangential continuity between adjacent patches using
a combination of upwinding and the symmetric interior penalty method [1, 15, 39].

We now establish some preliminary notations. Let Kh(Ωi) and Fh(Ωi) denote the
sets of physical mesh elements and faces associated with patch Ωi. We denote the
global set of mesh elements as Kh and the global set of mesh faces as Fh. As in the
single patch setting, we define the boundary mesh to be

Γh = {F ∈ Fh(Ωi), i = 1, . . . , np : F ⊂ ∂Ω} , (94)

and we define the interface mesh to be

Ih = {F ∈ Fh(Ωi), i = 1, . . . , np : F ∈ Fh(Ωj), i 6= j and F /∈ Γh} . (95)

For each face F ∈ Ih belonging to the interface mesh, there exist two unique adjacent
elements K+, K− ∈ Kh such that F ∈ ∂K+ and F ∈ ∂K−. We define for such a face
the mesh size

hF :=
1

2
(hK+ + hK−) . (96)

Let φ be an arbitrary scalar-, vector-, or matrix-valued piecewise smooth function,
and let us denote by φ+ and φ− the traces of φ on F as taken from within the interior
of K+ and K− respectively. We define the mean value of φ at x ∈ F as

{{φ}} :=
1

2

(
φ+ + φ−

)
. (97)

30



Further, for a generic multiplication operator �, we define the jump of φ�n at x ∈ F
as

Jφ� nK := φ+ � nK+ + φ− � nK− (98)

where nK+/− denotes the outward facing normal on the boundary ∂K+/− of element
K+/−.

With the above notation established, let us define the following bilinear form:

k∗h(w,v) =

np∑
i=1

(2ν∇sw,∇sv)(L2(Ωi))d×d

−
∑
F∈Ih

∫
F

2ν ({{∇sv}} : Jw⊗ nK + {{∇sw}} : Jv⊗ nK) ds

+
∑
F∈Ih

∫
F

2ν

(
2Cpen
hF

Jw⊗ nK : Jv⊗ nK
)
ds

−
∑
F∈Γh

∫
F

2ν

(
((∇sv) n) ·w + ((∇sw) n) · v− Cpen

hF
w · v

)
ds. (99)

Above, Cpen > 0 denotes the same positive penalty constant as before. We note that
the above bilinear form is coercive. Now, for Ωi an arbitrary patch, let ni denote the
outward-facing normal with respect to ∂Ωi. We define the upwind form

c∗h(w,x; v) =

np∑
i=1

− (w⊗ x,∇v)(L2(Ωi))d×d

+

np∑
i=1

∫
∂Ωi\∂Ω

1

2
(w · ni + |w · ni|) u · vds

+

np∑
i=1

∫
∂Ωi\∂Ω

1

2
(w · ni − |w · ni|) ue · vds

for w,x, v ∈ H0(div; Ω) where ue is the trace of u taken from the exterior of Ωi. We
would like to remark that the above form is nonlinear in w. Furthermore, the form
satisfies the semi-coercivity result c∗h(w,v; v) ≥ 0, and c∗h(w,x; v) = 0 for constant
vector-valued functions v : Ω→ Rd. Hence, the upwind form is conservative.

With all the preceding terminology defined, our discrete multi-patch formulation
reads as follows.

(MP )



Find uh ∈ V0,h and ph ∈ Q0,h such that

k∗h(uh,vh) + c∗(uh,uh; vh)− b(ph,vh) + b(qh,uh) = (f,vh)L2(Ω)

(100)

for all vh ∈ V0,h and qh ∈ Q0,h.
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As in the single patch setting, the discrete formulation detailed above returns a point-
wise divergence-free velocity field. Furthermore, the discrete formulation is consistent.
However, we do not yet have a convergence analysis available. We anticipate such a
convergence analysis will take new theoretical developments. Nonetheless, we have
utilized the above formulation in practice and observed it produces optimal conver-
gence rates for both velocity and pressure fields.

8 Numerical Verification of Convergence Estimates

In this section, we numerically verify our convergence estimates using a collection of
problems with exact solutions. Throughout, we choose Nitsche’s penalty constant as

Cpen = 5(k′ + 1)

which we have found to be sufficiently large in order to ensure numerical stability.
Additionally, we employ uniform parametric meshes, linear parametric mappings, and
B-spline spaces of maximal continuity.

8.1 Two-dimensional Manufactured Solution

As a first numerical experiment, we consider a two-dimensional manufactured vortex
solution that was originally presented in [8]. Let

Ω ≡ (0, 1)2

and
f ≡ ∇ · (ū⊗ ū)−∇ · (2ν∇sū) +∇p̄

with

ū =

[
2ex(−1 + x)2x2(y2 − y)(−1 + 2y)

(−ex(−1 + x)x(−2 + x(3 + x))(−1 + y)2y2)

]
and

p̄ = (−424 + 156e+ (y2 − y)(−456 + ex(456 + x2(228− 5(y2 − y))+
2x(−228 + (y2 − y)) + 2x3(−36 + (y2 − y)) + x4(12 + (y2 − y))))).

Homogeneous boundary conditions are applied along the boundary ∂Ω, and the condi-
tion

∫
Ω
pdx = 0 is enforced. A solution to the steady Navier-Stokes problem with the

prescribed forcing is then clearly (u, p) = (ū, p̄), and this solution is unique provided
a smallness condition is satisfied. The streamlines and pressure contours associated
with the solution are plotted in Figure 2.

To confirm our theoretically derived error estimates, we have computed conver-
gence rates for divergence-conforming B-spline discretizations of varying mesh size and
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Figure 2: Vortex manufactured solution in 2-D: (a) Flow velocity streamlines, (b)
Pressure contours.
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Table 1: Steady vortex flow convergence rates in 2-D: Re = 1

Polynomial degree k′ = 1

h 1/4 1/8 1/16 1/32 1/64
‖u− uh‖h 5.48e-2 2.80e-2 1.40e-2 7.00e-3 3.50e-3

order - 0.97 1.00 1.00 1.00
|u− uh|H1(Ω) 5.48e-2 2.80e-2 1.40e-2 7.00e-3 3.50e-3

order - 0.97 1.00 1.00 1.00
‖u− uh‖L2(Ω) 2.77e-3 8.16e-4 2.28e-4 6.10e-5 1.58e-5

order - 1.76 1.84 1.90 1.95
‖p− ph‖L2(Ω) 5.04e-3 1.38e-3 3.49e-4 8.72e-5 2.18e-5

order - 1.87 1.98 2.00 2.00

Polynomial degree k′ = 2

h 1/4 1/8 1/16 1/32 1/64
‖u− uh‖h 9.71e-3 2.33e-3 5.68e-4 1.40e-4 3.48e-5

order - 2.06 2.04 2.02 2.01
|u− uh|H1(Ω) 9.70e-3 2.33e-3 5.68e-4 1.40e-4 3.48e-5

order - 2.06 2.04 2.02 2.01
‖u− uh‖L2(Ω) 2.94e-4 3.84e-5 5.03e-6 6.47e-7 8.21e-8

order - 2.94 2.93 2.96 2.98
‖p− ph‖L2(Ω) 1.08e-3 1.12e-4 1.17e-5 1.19e-6 1.27e-7

order - 3.40 3.26 3.30 3.23

Polynomial degree k′ = 3

h 1/4 1/8 1/16 1/32 1/64
‖u− uh‖h 9.86e-4 1.28e-4 1.66e-5 2.13e-6 2.72e-7

order - 2.95 2.95 2.96 2.97
|u− uh|H1(Ω) 9.83e-4 1.28e-4 1.65e-5 2.10e-6 2.66e-7

order - 2.94 2.96 2.97 2.98
‖u− uh‖L2(Ω) 3.05e-5 2.34e-6 1.59e-7 1.03e-8 6.55e-10

order - 3.70 3.88 3.95 3.98
‖p− ph‖L2(Ω) 1.10e-4 5.64e-6 3.45e-7 2.19e-8 1.39e-9

order - 4.29 4.03 3.98 3.98
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Table 2: Robustness of 2-D divergence-free B-spline discretizations for increasing Re

Polynomial degree k′ = 1, h = 1/16

Re 0 1 10 100 1000 10000
‖u− uh‖h 1.40e-2 1.40e-2 1.40e-2 1.40e-2 1.40e-2 1.40e-2
|u− uh|H1(Ω) 1.40e-2 1.40e-2 1.40e-2 1.40e-2 1.40e-2 1.40e-2
‖u− uh‖L2(Ω) 2.28e-4 2.28e-4 2.28e-4 2.28e-4 2.28e-4 2.28e-4
‖p− ph‖L2(Ω) 3.49e-4 3.49e-4 1.98e-4 1.96e-4 1.96e-4 1.96e-4

Polynomial degree k′ = 2, h = 1/16

Re 0 1 10 100 1000 10000
‖u− uh‖h 5.68e-4 5.68e-4 5.68e-4 5.68e-4 5.68e-4 5.68e-4
|u− uh|H1(Ω) 5.68e-4 5.68e-4 5.68e-4 5.68e-4 5.68e-4 5.68e-4
‖u− uh‖L2(Ω) 5.03e-6 5.03e-6 5.03e-6 5.03e-6 5.03e-6 5.03e-6
‖p− ph‖L2(Ω) 1.17e-5 1.17e-5 6.50e-6 6.42e-4 6.42e-6 6.42e-6

Polynomial degree k′ = 3, h = 1/16

Re 0 1 10 100 1000 10000
‖u− uh‖h 1.66e-5 1.66e-5 1.66e-5 1.66e-5 1.66e-5 1.66e-5
|u− uh|H1(Ω) 1.66e-5 1.66e-5 1.66e-5 1.66e-5 1.66e-5 1.66e-5
‖u− uh‖L2(Ω) 1.59e-7 1.59e-7 1.59e-7 1.59e-7 1.59e-7 1.59e-7
‖p− ph‖L2(Ω) 3.45e-7 3.45e-7 3.19e-7 3.19e-7 3.19e-7 3.19e-7

Table 3: Instability of conservative 2-D Taylor-Hood discretizations for increasing Re

Q2/Q1 velocity/pressure pair, h = 1/16

Re 0 1 10 100 1000 10000
|u− uh|H1(Ω) 6.78e-4 6.78e-4 7.11e-4 2.26e-3 2.16e-2 2.16e-1
‖u− uh‖L2(Ω) 6.54e-6 6.54e-6 6.79e-6 1.97e-5 1.86e-4 2.35e-3
‖p− ph‖L2(Ω) 1.96e-4 1.96e-4 1.96e-4 1.96e-4 1.96e-4 1.96e-4
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polynomial degree. Furthermore, we have computed rates for a variety of Reynolds
numbers

Re =
UL

ν

where U is a velocity scale parameter and L is a length scale parameter. We take U =
1 and L = 1. In Table 1, we have plotted our numerically computed convergence rates
for Re = 1. First, note that our theoretically derived error estimates are confirmed.
Second, note that the L2-norm of the pressure error optimally converges like O(hk

′+1),
which is an improvement over our theoretically derived estimate. Third, note that
the results in Table 1 are identical to the Stokes results appearing in Table 2 of [19].
Hence, the introduction of convection has not affected our numerical error.

While our theoretically derived error estimates only cover flows with “small”
Reynolds number (and indeed uniqueness is only guaranteed under a smallness condi-
tion), we have investigated the effectiveness of our discretization for larger Reynolds
number flows and the two-dimensional forcing prescribed above. To compute these
flow solutions, we used a Newton-Raphson nonlinear solver in conjunction with con-
tinuation. The results of this investigation are included in Table 2 for meshes with
16 × 16 elements. Note that the velocity numerical errors in the tables appear in-
dependent of the Reynolds number. Moreover, the pressure numerical errors seem
to improve with increasing Reynolds number. Hence, we are able to recover the de-
sired flow solution (u, p) for large Reynolds numbers. This observation attests to the
enhanced stability properties of our discretization for nonlinear flow problems even
in the absence of any external stabilization mechanisms. To contrast our methodol-
ogy with standard mixed finite element discretizations, we have repeated the above
computations for conservative Taylor-Hood [24] finite element approximations, us-
ing again a continuation method in conjunction with a Newton-Raphson nonlinear
solver. The results of these computations are included in Table 3. Note that while the
pressure error is well-behaved, the velocity error diverges with increasing Reynolds
number. We believe that this divergence is inherently tied to the fact the Taylor-Hood
approximations only satisfy the divergence-free constraint approximately.

8.2 Three-dimensional Manufactured Solution

As a second numerical experiment, we consider a three-dimensional manufactured
solution representing a single vortical filament. Let

Ω ≡ (0, 1)3

and
f ≡ ∇ · (ū⊗ ū)−∇ · (2ν∇sū) +∇p̄

with
ū = curlφ̄,
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Figure 3: Vortex manufactured solution in 3-D: Flow velocity streamlines colored by
velocity magnitude.

φ̄ =

 x(x− 1)y2(y − 1)2z2(z − 1)2

0
x2(x− 1)2y2(y − 1)2z(z − 1)

 ,
and

p̄ = sin(πx) sin(πy)− 4

π2
.

Again, homogeneous boundary conditions are applied along the boundary ∂Ω, and
the pressure is enforced to satisfy

∫
Ω
pdx = 0. A solution to the steady Navier-Stokes

equations with the prescribed forcing is then clearly (u, p) = (ū, p̄), and for sufficiently
small data, this solution is unique. Streamlines associated with the exact solution are
plotted in Figure 3.

For Re = 1 flow (with Re = 1/ν), we have computed convergence rates for
divergence-conforming B-spline discretizations of varying mesh size and polynomial
degree. In Table 4, we have listed our numerically computed convergence rates.
First, note that our theoretically derived error estimates are confirmed. Second, note
that the L2-norm of the pressure error optimally converges like O(hk

′+1), which is
an improvement over our theoretically derived estimate. Third, note that, as in the
two-dimensional setting, the results in Table 4 are identical to the Stokes results
appearing in Table 5 of [19]. Hence, the introduction of convection has not affected
our numerical error.

Again, while our theoretically derived error estimates only cover flows with “small”
Reynolds number, we have investigated the effectiveness of our discretization for larger

37



Table 4: Steady vortex flow convergence rates in 3-D: Re = 1.

Polynomial degree k′ = 1

h 1/2 1/4 1/8 1/16 1/32
‖u− uh‖h 1.83e-2 8.98e-3 4.18e-3 1.99e-3 9.62e-4

order - 1.03 1.10 1.07 1.05
|u− uh|H1(Ω) 1.51e-2 7.64e-3 3.77e-3 1.87e-3 9.34e-4

order - 0.98 1.02 1.01 1.00
‖u− uh‖L2(Ω) 1.35e-3 3.68-4 1.03e-4 2.81e-5 7.40e-6

order - 1.88 1.84 1.87 1.93
‖p− ph‖L2(Ω) 5.41e-2 1.48e-2 3.58e-3 8.85e-4 2.26e-4

order - 1.87 2.05 2.02 1.97

Polynomial degree k′ = 2

h 1/2 1/4 1/8 1/16 1/32
‖u− uh‖h 6.50e-3 1.54e-3 4.10e-4 9.51e-5 2.15e-5

order - 2.08 1.91 2.11 2.15
|u− uh|H1(Ω) 3.71e-3 9.90e-4 2.79e-4 6.59e-5 1.50e-5

order - 1.91 1.83 2.08 2.14
‖u− uh‖L2(Ω) 1.97e-4 4.25e-5 7.38e-6 8.67e-7 9.18e-8

order - 2.21 2.53 3.09 3.23
‖p− ph‖L2(Ω) 1.50e-2 1.59e-3 2.00e-4 2.56e-5 3.26e-6

order - 3.24 2.99 2.97 2.97

Table 5: Robustness of 3-D divergence-free B-spline discretizations for increasing Re

Polynomial degree k′ = 1, h = 1/16

Re 0 1 10 100 1000 10000
‖u− uh‖h 1.99e-3 1.99e-3 1.99e-3 1.99e-3 1.99e-3 1.99e-3
|u− uh|H1(Ω) 1.87e-3 1.87e-3 1.87e-3 1.87e-3 1.87e-3 1.87e-3
‖u− uh‖L2(Ω) 2.81e-5 2.81e-5 2.81e-5 2.81e-5 2.81e-5 2.81e-5
‖p− ph‖L2(Ω) 8.84e-4 8.84e-4 8.84e-4 8.84e-4 8.84e-4 8.84e-4

Polynomial degree k′ = 2, h = 1/16

Re 0 1 10 100 1000 10000
‖u− uh‖h 9.51e-5 9.51e-5 9.51e-5 9.51e-5 9.51e-5 9.51e-5
|u− uh|H1(Ω) 6.59e-5 6.59e-5 6.59e-5 6.59e-5 6.59e-5 6.59e-5
‖u− uh‖L2(Ω) 8.67e-7 8.67e-7 8.67e-7 8.67e-7 8.67e-7 8.67e-7
‖p− ph‖L2(Ω) 2.56e-5 2.56e-5 2.56e-5 2.56e-5 2.56e-5 2.56e-5
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Reynolds number flows and the three-dimensional forcing prescribed above. We used
a Newton-Raphson nonlinear solver in conjunction with continuation. The results
of this investigation are included in Table 5 for meshes with 16 × 16 × 16 elements.
Note that the velocity and pressure numerical errors appearing in the tables are
independent of the Reynolds number. Hence, we are able to recover the desired flow
solution (u, p) for large Reynolds numbers.

8.3 Kovasznay Flow

As a third numerical experiment, we consider Kovasznay flow. Kovasznay flow refers
to the flow behind an infinite two-dimensional grid, and it is often utilized as a
convergence test for Navier-Stokes discretizations. The flow pattern is periodic and
can be analytically derived [27]. Indeed, denoting Re = 1

ν
, the flow solution satisfies

u =

[
1− eλx cos(2πy)
λ
2π
eλx cos(2πy).

]
and

p = 1−e2λx
2

.

where

λ =
Re

2
−
√

Re2

4
+ 4π2.

The streamlines and pressure contours associated with the Kovasznay flow solution
at Re = 40 are plotted in Figure 4. Note that the streamlines closely resemble the
streamlines associated with steady flow behind a cylinder.

To solve the Kovasznay flow problem numerically, we restrict ourselves to the
domain Ω = (0, 1) × (−1/2, 1/2). On the left, bottom, and top sides of the domain,
we enforce Dirichlet boundary conditions. On the right side of the domain, we enforce
a traction boundary condition. On the interior of the domain, we apply the usual
forcing

f ≡ ∇ · (u⊗ u)−∇ · (2ν∇su) +∇p.

We have computed Re = 40 flow convergence rates for a variety of divergence-
conforming B-spline discretizations. These rates are summarized in Table 6. Note
that the convergence rates are approaching the optimal rates as h → 0 for both
the velocity and pressure field. However, it is apparent that even for h = 1/64 our
computations still lie in the pre-asymptotic range.

8.4 Cylindrical Couette Flow

As a final convergence-rate experiment, we consider cylindrical Couette flow. Couette
flow is often used as a “sanity check” for Navier-Stokes discretizations. Cylindrical
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Figure 4: Steady Kovasznay flow: (a) Streamlines for Re = 40, (b) Pressure contours
for Re = 40.
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Table 6: Steady Kovasznay flow convergence rates: Re = 40

Polynomial degree k′ = 1

h 1/4 1/8 1/16 1/32 1/64
|u− uh|H1(Ω) 1.39e0 7.31e-1 3.69e-1 1.84e-1 9.19e-2

order - 0.93 0.99 1.00 1.00
‖u− uh‖L2(Ω) 5.31e-2 1.98e-2 6.78e-3 2.15e-3 6.34e-4

order - 1.43 1.54 1.66 1.76
‖p− ph‖L2(Ω) 3.98e-2 1.49e-2 4.73e-3 1.35e-3 3.75e-4

order - 1.42 1.65 1.81 1.85

Polynomial degree k′ = 2

h 1/4 1/8 1/16 1/32 1/64
|u− uh|H1(Ω) 4.59e-1 1.17e-1 2.78e-2 6.69e-3 1.64e-3

order - 1.97 2.08 2.05 2.03
‖u− uh‖L2(Ω) 1.44e-2 1.96e-3 2.41e-4 3.04e-5 2.83e-6

order - 2.88 3.02 2.99 2.99
‖p− ph‖L2(Ω) 1.65e-2 3.55e-3 5.14e-4 7.05e-5 9.56e-6

order - 2.22 2.79 2.87 2.88

Polynomial degree k′ = 3

h 1/4 1/8 1/16 1/32 1/64
|u− uh|H1(Ω) 1.29e-1 1.52e-2 1.94e-3 2.55e-4 3.31e-5

order - 3.08 2.98 2.92 2.95
‖u− uh‖L2(Ω) 2.95e-3 1.97e-4 1.64e-5 1.20e-6 8.51e-8

order - 3.91 3.59 3.77 3.81
‖p− ph‖L2(Ω) 5.59e-3 6.48e-4 5.75e-5 5.28e-6 4.00e-7

order - 3.11 3.49 3.45 3.72
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Couette flow is a more realistic problem which describes the flow between two concen-
tric rotating cylinders. Here, we consider flow between a fixed outer cylinder and a
rotating inner cylinder. The problem setup is illustrated in Figure 5(a). No external
forcing is applied. The velocity field for this flow assumes the form

u =

[
uθ(r) sin(θ)
uθ(r) cos(θ)

]
where

uθ(r) = Ar +
B

r
,

(r, θ) are polar coordinates with respect to the center of the cylinders, and

A = −Ωin
δ2

1− δ2
, B = Ωin

r2
in

(1− δ2)
, Ωin =

U

rin
, δ =

rin
rout

.

We have depicted this velocity field in Figure 5(b). The pressure field for cylindrical
Couette flow is axisymmetric and satisfies the differential equation

∂p(r)

∂r
=
uθ(r)

2

r
. (101)

The above differential equation coupled with the constraint∫
Ω

pdx = 0

determines the pressure field uniquely. In what follows, we assume rin = 1, rout = 2,
and U = 1.

We have computed convergence rates for a variety of divergence-conforming B-
spline discretizations and for Re = 40. To represent the annular domain in our
computations, we employed the polar mapping

F(ξ1, ξ2) =

[
((rout − rin)ξ2 + rin) sin(2πξ1)
((rout − rin)ξ2 + rin) cos(2πξ1)

]
,∀(ξ1, ξ2) ∈ (0, 1)2 (102)

and periodic B-splines of maximal continuity in the ξ1-direction (see Section 2 of [17]).
It should be emphasized that we do not use the polar form of the steady Navier-Stokes
equations. Rather, we utilize the polar mapping to define our divergence-conforming
B-splines in physical space and then employ the Cartesian-based variational formu-
lation discussed in this chapter. The results of our computations are summarized
in Table 7. Note from the table that all of our theoretically derived error estimates
are confirmed. Furthermore, we have obtained axisymmetric velocity fields with zero
radial components, and the discrete pressure field converges at optimal order. We
have additionally simulated the cylindrical Couette flow problem using a multi-patch
NURBS construction (see Subsection 8.4 of [19]) and obtained identical discrete ve-
locity fields and slightly differing (yet still optimally convergent) discrete pressure
fields.
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Figure 5: Cylindrical Couette flow: (a) Problem setup, (b) Flow velocity arrows.
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h/h0 = 1/2

h/h0 = 1/4

h/h0 = 1/8

Figure 6: Cylindrical Couette flow: Sequence of polar meshes.
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Table 7: Cylindrical Couette flow convergence rates: Re = 40

Polynomial degree k′ = 1

h/h0 1/2 1/4 1/8 1/16 1/32
‖u− uh‖h 5.42e-1 2.63e-1 1.26e-1 6.12e-2 2.99e-2

order - 1.04 1.06 1.04 1.03
|u− uh|H1(Ω) 4.48e-1 2.32e-1 1.17e-1 5.86e-2 2.93e-2

order - 0.95 0.99 1.00 1.00
‖u− uh‖L2(Ω) 5.00e-2 1.53-2 4.28e-3 1.14e-3 2.94e-4

order - 1.71 1.84 1.91 1.96
‖p− ph‖L2(Ω) 2.36e-2 6.32e-3 1.62e-3 4.10e-4 1.03e-4

order - 1.90 1.96 1.98 1.99
‖ur − (ur)h‖L2(Ω) 0 0 0 0 0

Polynomial degree k′ = 2

h/h0 1/2 1/4 1/8 1/16 1/32
‖u− uh‖h 9.77e-2 2.42e-2 5.64e-3 1.32e-3 3.14e-4

order - 2.01 2.10 2.10 2.07
|u− uh|H1(Ω) 7.68e-2 2.00e-2 4.92e-3 1.21e-3 2.99e-4

order - 1.94 2.02 2.02 2.02
‖u− uh‖L2(Ω) 4.43e-3 6.03e-4 8.13e-5 1.07e-5 1.38e-6

order - 2.88 2.89 2.93 2.95
‖p− ph‖L2(Ω) 3.14e-3 4.46e-4 6.15e-5 8.23e-6 1.07e-6

order - 2.82 2.86 2.90 2.94
‖ur − (ur)h‖L2(Ω) 0 0 0 0 0

Polynomial degree k′ = 3

h/h0 1/2 1/4 1/8 1/16 1/32
‖u− uh‖h 2.01e-2 2.67e-3 3.27e-4 4.01e-5 4.98e-6

order - 2.91 3.03 3.03 3.01
|u− uh|H1(Ω) 1.52e-2 2.13e-3 2.84e-4 3.72e-5 4.80e-6

order - 2.84 2.91 2.93 2.95
‖u− uh‖L2(Ω) 6.59e-4 5.69e-5 4.82e-6 3.50e-7 2.33e-8

order - 3.53 3.56 3.78 3.91
‖p− ph‖L2(Ω) 3.86e-4 3.41e-5 2.98e-6 2.23e-7 1.51e-8

order - 3.50 3.52 3.74 3.88
‖ur − (ur)h‖L2(Ω) 0 0 0 0 0
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Figure 7: Lid-driven flow in a two-dimensional cavity: Problem setup.

9 Benchmark Problems

In this section, we investigate the effectiveness of our methodology as applied to
two benchmark problems: two-dimensional lid-driven cavity flow and confined jet
impingement. As previously, we choose Nitsche’s penalty constant as Cpen = 5(k′+1)
for all of the following examples, and we employ uniform parametric meshes, linear
parametric mappings, and B-spline spaces of maximal continuity.

9.1 Two-dimensional Lid-driven Cavity Flow

Two-dimensional lid-driven cavity flow is widely considered to be one of the classical
test problems for the validation of numerical discretizations for incompressible flow
simulation. In the presence of increasing Reynolds number, lid-driven cavity flow
loses its symmetry and eventually becomes unsteady. The problem setup for lid-
driven cavity flow is shown in Figure 7. For the computations here, H and U are
defined to be 1. The Reynolds number associated with the flow is defined to be

Re =
UH

ν
.

The left, right, and bottom sides of the cavity are fixed no-slip walls while the top
side of the cavity is a wall which slides to the right with velocity magnitude U . The
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Figure 8: Lid-driven cavity flow: Streamlines for Re = 100.

forcing f is defined to be zero. The pressure and stress fields associated with this flow
experience corner singularities which impede the convergence of numerical methods
and expose unstable velocity/pressure pairs. Furthermore, the velocity boundary
condition is discontinuous at the upper left and right corners of the domain. In
classical finite element analysis, this boundary condition must be replaced with an
approximate “smooth” boundary condition. Here, as the prescribed slip boundary
condition is weakly enforced, we do not have to invoke such an approximation and
can instead directly utilize the discontinuous boundary condition.

We have numerically simulated lid-driven cavity flow at Re = 100, Re = 400, and
Re = 1000 using a variety of divergence-conforming B-spline discretizations. Stream-
lines computed using a mesh of degree k′ = 1 and size h = 1/128 are plotted in Figures
8, 9, and 10 for Re = 100, Re = 400, and Re = 1000, respectively. These computed
streamlines are visually indistinguishable from benchmark streamlines appearing in
the literature.

We have compared our numerical results with the classical benchmark results of
Ghia et al. [21] for three different polynomial degrees (k′ = 1, k′ = 2, k′ = 3),
three different mesh sizes (h = 1/32, h = 1/64, and h = 1/128), and the selected
Reynolds numbers. The results of Ghia were obtained using a second-order upwind
finite difference method on a stretched mesh with 1292 grid points. In Figures 11(a),
12(a), and 13(a), we have compared our k′ = 1, Re = 100 values for the horizontal
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Figure 9: Lid-driven cavity flow: Streamlines for Re = 400.

component of the velocity field along the vertical center line with those of Ghia,
and in Figures 11(b), 12(b), and 13(b), we have compared our k′ = 1, Re = 100
values for the vertical component of the velocity field along the horizontal center
line. Note that our centerline velocity results are roughly independent of the mesh
size. Second, note that while our results ostensibly match those of Ghia, there are
discernible quantitative differences between the two sets of results even for our finest
mesh. To investigate these differences further, we have employed a set of converged
pseudospectral results that were obtained via a subtraction method to remove the
leading terms of the corner singularities [5]. In Table 8, we have compared our
centerline results with these converged results as well as the results of Ghia. Note
that our results are much more accurate than the results of Ghia for all mesh sizes
and polynomial degrees. Furthermore, our results for k′ = 2 and k′ = 3 on a 64× 64
element mesh are indistinguishable from the converged pseudospectral results. This
attests to the effectiveness of our discretization with increasing k′, even in the presence
of singularities. We should also again remark that these results were obtained without
stretched meshes and without stabilization. We believe that the combination of exact
mass conservation and weak enforcement of the no-slip condition plays a pivotal role
in the enhanced accuracy of our discretization scheme.

In Figures 14(a), 15(a), and 16(a), we have compared our k′ = 1, Re = 400 values
for the horizontal component of the velocity field along the vertical center line with
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Figure 10: Lid-driven cavity flow: Streamlines for Re = 1000.

those of Ghia, and in Figures 14(b), 15(b), and 16(b), we have compared our k′ = 1,
Re = 400 values for the vertical component of the velocity field along the horizontal
center line. Note that our Re = 400 results match the results of Ghia better than
the Re = 100 results. In fact, our Re = 400 results are nearly indistinguishable from
the benchmark results on the finest mesh. This is encouraging as the Ghia Re = 400
results match well with highly-accurate extrapolated results in the literature [34].
Moreover, our results for the coarsest mesh match the results of Ghia better than any
comparable second-order results we have seen in the literature. In Table 8, we have
compared our centerline results with the results of Ghia along with our results for
k′ = 2 and k′ = 3 on a 64×64 element mesh. Note that our results appear to converge
quickly with increasing k′, despite the increased smoothness of our discrete spaces.
By using our k′ = 3 results as a benchmark, we see our k′ = 1 results are considerably
more accurate than Ghia’s results for h ≤ 1/64. Unfortunately, no pseudospectral
results are available to use as comparison.

In Figures 17(a), 18(a), and 19(a), we have compared our k′ = 1, Re = 1000 values
for the horizontal component of the velocity field along the vertical center line with
those of Ghia, and in Figures 17(b), 18(b), and 19(b), we have compared our k′ = 1,
Re = 1000 values for the vertical component of the velocity field along the horizontal
center line. This is a more challenging test case than either the Re = 100 or Re = 400
flows, and the coarse 32 × 32 element mesh is not nearly fine enough to resolve the
flow features. Nonetheless, our results for this coarse mesh better match the results
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Table 8: Two-dimensional lid-driven cavity flow: Extrema of the velocity through the
centerlines of the cavity.

Re = 100

Method umin vmax vmin
B-spline, k′ = 1 and h = 1/32 −0.21551 0.18054 −0.25472
B-spline, k′ = 1 and h = 1/64 −0.21443 0.17991 −0.25409
B-spline, k′ = 1 and h = 1/128 −0.21414 0.17966 −0.25387
B-spline, k′ = 2 and h = 1/64 −0.21404 0.17957 −0.25379
B-spline, k′ = 3 and h = 1/64 −0.21404 0.17957 −0.25380

Pseudospectral (Ref. [5]) −0.21404 0.17957 −0.25380
Ghia et al. (Ref. [21]) −0.21090 0.17527 −0.24533

Re = 400

Method umin vmax vmin
B-spline, k′ = 1 and h = 1/32 −0.33651 0.31039 −0.45768
B-spline, k′ = 1 and h = 1/64 −0.33150 0.30605 −0.45659
B-spline, k′ = 1 and h = 1/128 −0.32989 0.30471 −0.45470
B-spline, k′ = 2 and h = 1/64 −0.32927 0.30415 −0.45406
B-spline, k′ = 3 and h = 1/64 −0.32925 0.30413 −0.45401

Ghia et al. (Ref. [21]) −0.32376 0.30203 −0.44993

Re = 1000

Method umin vmax vmin
B-spline, k′ = 1 and h = 1/32 −0.40140 0.39132 −0.54261
B-spline, k′ = 1 and h = 1/64 −0.39399 0.38229 −0.53353
B-spline, k′ = 1 and h = 1/128 −0.39021 0.37856 −0.52884
B-spline, k′ = 2 and h = 1/64 −0.38874 0.37715 −0.52726
B-spline, k′ = 3 and h = 1/64 −0.38857 0.37698 −0.52696

Pseudospectral (Ref. [5]) −0.38857 0.37694 −0.52707
Ghia et al. (Ref. [21]) −0.38289 0.37095 −0.51550
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Figure 11: Lid-driven cavity flow: Velocity field for k′ = 1, h = 1/32, and Re = 100.
(a) Value of the horizontal component of the velocity field along the vertical center
line, (b) Value of the vertical component of the velocity field along the horizontal
center line.
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Figure 12: Lid-driven cavity flow: Velocity field for k′ = 1, h = 1/64, and Re = 100.
(a) Value of the horizontal component of the velocity field along the vertical center
line, (b) Value of the vertical component of the velocity field along the horizontal
center line.
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Figure 13: Lid-driven cavity flow: Velocity field for k′ = 1, h = 1/128, and Re = 100.
(a) Value of the horizontal component of the velocity field along the vertical center
line, (b) Value of the vertical component of the velocity field along the horizontal
center line.
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Figure 14: Lid-driven cavity flow: Velocity field for k′ = 1, h = 1/32, and Re = 400.
(a) Value of the horizontal component of the velocity field along the vertical center
line, (b) Value of the vertical component of the velocity field along the horizontal
center line.
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Figure 15: Lid-driven cavity flow: Velocity field for k′ = 1, h = 1/64, and Re = 400.
(a) Value of the horizontal component of the velocity field along the vertical center
line, (b) Value of the vertical component of the velocity field along the horizontal
center line.
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Figure 16: Lid-driven cavity flow: Velocity field for k′ = 1, h = 1/128, and Re = 400.
(a) Value of the horizontal component of the velocity field along the vertical center
line, (b) Value of the vertical component of the velocity field along the horizontal
center line.
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Figure 17: Lid-driven cavity flow: Velocity field for k′ = 1, h = 1/32, and Re = 1000.
(a) Value of the horizontal component of the velocity field along the vertical center
line, (b) Value of the vertical component of the velocity field along the horizontal
center line.
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Figure 18: Lid-driven cavity flow: Velocity field for k′ = 1, h = 1/64, and Re = 1000.
(a) Value of the horizontal component of the velocity field along the vertical center
line, (b) Value of the vertical component of the velocity field along the horizontal
center line.

58



0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

u/U

y
/
H

 

 

h = 1/128
Ghia et. al

(a)

0 0.2 0.4 0.6 0.8 1
0.6

0.4

0.2

0

0.2

0.4

x/H

v
/
U

 

 

h = 1/128
Ghia et. al

(b)

Figure 19: Lid-driven cavity flow: Velocity field for k′ = 1, h = 1/128, and Re = 1000.
(a) Value of the horizontal component of the velocity field along the vertical center
line, (b) Value of the vertical component of the velocity field along the horizontal
center line.
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of Ghia than any comparable second-order results we have seen in the literature. Our
results for the 64×64 and 128×128 element meshes match Ghia’s results even better.
In Table 8, we have compared our centerline results with the results of Ghia along
with a set of converged pseudospectral results with singularity subtraction [5]. As
expected, the results of Ghia are more accurate than our coarse mesh results, but our
results for the 64× 64 element mesh are comparable in accuracy and our results for
the 128×128 element mesh are considerably more accurate. We also computed results
for the 64× 64 element mesh for polynomial degrees k′ = 2 and k′ = 3 and found our
results quickly improved with increasing polynomial degree. Indeed, our results for
k′ = 3 are nearly indistinguishable from the converged pseudospectral results.

To compute all of these flow examples, we utilized the Newton-Raphson method
in conjunction with continuation. Specifically, for the Re = 100 simulations, we
employed Newton-Raphson using the results of a corresponding Stokes simulation as
an initial guess. For the Re = 400 simulations, we employed Newton-Raphson using
the results of the Re = 100 simulations as an initial guess, and so on. We found
a maximum of four Newton-Raphson steps were required to achieve a sufficiently
accurate solution for each nonlinear solve. Using this procedure, we have been able
to successfully simulate flows upwards of Re = 3200 on relatively coarse meshes. We
have also been able to reproduce all of the results presented here by a more expensive
dynamic approach in which the solution is evolved from an initial condition by the
unsteady Navier-Stokes equations.

9.2 Confined Jet Impingement

Impinging jets are commonly used in engineering applications due to their enhanced
heat and mass transfer characteristics. Impinging jets even occur in blood vessels and
are believed to play a role in atherogenesis [20]. Many discretization schemes yield
a velocity field with spurious nonzero divergence when applied to the simulation of
incompressible jet impingement, even at small and moderate Reynolds numbers. As
our proposed discretization satisfies the divergence-free constraint exactly, it does not
suffer from this non-physical behavior.

The physical problem of confined jet impingement is illustrated in Figure 20. Fluid
flows from one pipe into a second pipe lying perpendicular to the first. To simulate
this flow, we use a two-dimensional mathematical idealization which is illustrated in
Figure 21. Along the left hand side of the domain, a symmetry condition is applied
as we only model half of the jet system. Along the bottom side of the domain, no-
slip and no-penetration boundary conditions are enforced. Along the top side of the
domain, two different sets of boundary conditions are applied. Along the first D/2
length of the top side, an inflow boundary condition is applied. Along the remainder
of the top side, no-slip and no-penetration boundary conditions are enforced. Along
the right hand side of the domain, a zero-traction boundary condition is enforced.
The height of the domain is set as H, and the length of the domain, L, is chosen long
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Figure 20: Confined jet impingement: Physical setup.
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Figure 21: Confined jet impingement: Model problem description.
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enough such that the flow exiting the pipe is parallel to the outflow plane. For the
computations here, D = H = 1 and L = 8. The inflow speed is set to be U = 1. The
Reynolds number for the flow is defined as Re = UH/ν.

We have simulatedRe = 50 confined jet impingement for two divergence-conforming
B-spline discretizations of polynomial degree k′ = 1 corresponding to mesh lengths of
h = 1/16 and h = 1/32. The resulting velocity fields are plotted in Figures 22 and 23.
First, note that the computed streamlines for the two meshes are indistinguishable.
Second, note that the velocity fields are smooth and free from spurious oscillations.
To compare our simulation results with those of a classical mixed method, we have
simulated the impingement problem for a conservative Taylor-Hood finite element
discretization with mesh length h = 1/8. This discretization contains approximately
the same number of velocity degrees of freedom as the preceding coarse B-spline
discretization. The velocity field resulting from the Taylor-Hood discretization is
plotted in Figure 24. Note that the contours of the velocity field roughly match the
velocity contours resulting from the divergence-conforming B-spline discretizations.
However, the velocity field resulting from the Taylor-Hood discretization exhibits sig-
nificant non-physical compressibility. We have conducted numerical investigations of
confined jet impingement at other Reynolds numbers and obtained similar results to
those reported here.

10 Conclusions

In this paper, divergence-conforming B-spline discretizations have been presented
for the steady Navier-Stokes equations utilizing a variational formulation written in
conservation form. Tangential velocity boundary conditions are implemented weakly
using Nitsche’s method. The formulation yields velocity fields that are pointwise
divergence-free on general mapped geometries. A collection of stability and error
estimates have been derived for flows subject to a smallness condition, and these
theoretical results have been confirmed and supplemented by numerical simulations
of problems with known analytical solutions. In fact, these numerical simulations
have revealed that the proposed discretizations are robust with respect to Reynolds
number, a property not shared by classical finite elements such as the Taylor-Hood
element. The new discretizations have also been applied to a selection of benchmark
problems where the advantages of the new methodology over classical methods have
been highlighted. In future work, we plan to extend the present developments to the
unsteady Navier-Stokes equations and generalize to locally-refined meshes.
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